Skip to main content
Log in

2D Sub-pixel Point Spread Function Measurement Using a Virtual Point-Like Source

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

2D point spread function (PSF) is a commonly used measure to assess the quality of various imaging systems. The most convenient way of 2D PSF measurement is taking an image of a light source with its size well below the diffraction limit of the imaging system. In this paper, we present a novel method that allows formation of such a virtual point-like source by a simple setup with a convex spherical mirror and a collimated light source. Sub-pixel 2D PSF measurements are possible by displacing the setup in sub-pixel steps. Comparison of the 1D modulation transfer functions estimated by the proposed method and the International Organization for Standardization (ISO) 12233 standard shows that the proposed method presents a viable alternative to the ISO 12233 standard. Furthermore, future work on calibration patterns and algorithms for sub-pixel 2D PSF estimation from a single image could benefit from the presented method, which provides ground truth sub-pixel 2D PSF measurements for real imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arnison, M. R., Morgan-Mar, D. P., Deller, C. A., Fletcher, P. A., & Larkin, K. G. (2011). Measurement of the lens optical transfer function using a tartan pattern. Applied Optics, 50(15), 2158–2169.

    Article  Google Scholar 

  • Bass, M., & Mahajan, V. N. (2010). Handbook of optics, Vol. I: Geometrical and physical optics, polarized light, components and instruments. New York: McGraw-Hill.

  • Boone, J. M., & Seibert, J. A. (1994). An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Medical Physics, 21(10), 1541–1545.

    Article  Google Scholar 

  • Boreman, G. D., & Yang, S. (1995). Modulation transfer function measurement using three-and four-bar targets. Applied Optics, 34(34), 8050–8052.

    Article  Google Scholar 

  • Burns, P. D. (2000). Slanted-edge MTF for digital camera and scanner analysis. In IS&T PICS Conference (pp. 135–138).

  • Burns, P. D. (2015). sfrmat3. Accessed June 15, 2015, from http://losburns.com/imaging/software/SFRedge/sfrmat3_post/index.html.

  • Burns, P. D., & Williams, D. (2002). Refined slanted-edge measurement for practical camera and scanner testing. In IS&T PICS conference (pp. 191–195).

  • Claxton, C. D., & Staunton, R. C. (2008). Measurement of the point-spread function of a noisy imaging system. JOSA A, 25(1), 159–170.

    Article  Google Scholar 

  • Cracknell, A. (1998). Review article synergy in remote sensing-what’s in a pixel? International Journal of Remote Sensing, 19(11), 2025–2047.

    Article  Google Scholar 

  • Delbracio, M., Almansa, A., Morel, J. M., & Musé, P. (2012a). Subpixel point spread function estimation from two photographs at different distances. SIAM Journal on Imaging Sciences, 5(4), 1234–1260.

    Article  MathSciNet  MATH  Google Scholar 

  • Debracio, M., & Musé, P. (2012b). Non-parametric sub-pixel local point spread function estimation. Image Processing on Line, 2, 8–21.

    Article  Google Scholar 

  • Delbracio, M., Musé, P., Almansa, A., & Morel, J. M. (2012c). The non-parametric sub-pixel local point spread function estimation is a well posed problem. International Journal of Computer Vision, 96(2), 175–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Du, H., & Voss, K. J. (2004). Effects of point-spread function on calibration and radiometric accuracy of CCD camera. Applied Optics, 43(3), 665–670.

    Article  Google Scholar 

  • Fetterly, K. A., Hangiandreou, N. J., Schueler, B. A., & Ritenour, E. R. (2002). Measurement of the presampled two-dimensional modulation transfer function of digital imaging systems. Medical Physics, 29(5), 913–921.

    Article  Google Scholar 

  • Frenkel, A., Sartor, M., & Wlodawski, M. (1997). Photon-noise-limited operation of intensified CCD cameras. Applied Optics, 36(22), 5288–5297.

    Article  Google Scholar 

  • Guenther, B. (1990). Modern Optics. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Imatest LLC (2004–2015) Sharpness: What is it and how is it measured? Accessed. June 15, 2015, from http://www.imatest.com/docs/sharpness/.

  • Joshi, N., Szeliski, R., Kriegman, D. J. (2008). PSF estimation using sharp edge prediction. In IEEE computer society conference on computer vision and pattern recognition (CVPR 2008) (pp. 1–8).

  • Katrašnik, J., Pernuš, F., & Likar, B. (2013). Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems. Applied Optics, 52(15), 3526–3537.

    Article  Google Scholar 

  • Kee, E., Paris, S., Chen, S., Wang, J. (2011). Modeling and removing spatially-varying optical blur. In 2011 IEEE international conference on computational photography (ICCP) (pp. 1–8).

  • Kim, K. S. (1994). Accurate determination of subpixel resolution point spread function from imprecise measurement data. In SPIE’s international symposium on optical engineering and photonics in aerospace sensing, international society for optics and photonics (pp. 185–192).

  • Lamberts, R., Higgins, G., & Wolfe, R. (1958). Measurement and analysis of the distribution of energy in optical images. JOSA, 48(7), 487–487.

    Article  Google Scholar 

  • Lehr, J., Sibarita, J. B., & Chassery, J. M. (1998). Image restoration in X-ray microscopy: PSF determination and biological applications. IEEE Transactions onImage Processing, 7(2), 258–263.

    Article  Google Scholar 

  • Lenhard, K., Baumgartner, A., Gege, P., Nevas, S., Nowy, S., & Sperling, A. (2015). Impact of improved calibration of a NEO HySpex VNIR-1600 sensor on remote sensing of water depth. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 6085–6098.

    Article  Google Scholar 

  • Markham, B. L. (1985). The Landsat sensors’ spatial responses. IEEE Transactions on Geoscience and Remote Sensing, 6, 864–875.

    Article  Google Scholar 

  • Milanfar, P. (2010). Super-resolution imaging. Boca Raton: CRC Press.

    Google Scholar 

  • Mosleh, A., Green, P., Onzon, E., Begin, I., & Pierre Langlois, J. (2015). Camera intrinsic blur kernel estimation: A reliable framework. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4961–4968).

  • Navas-Moya, F. A., Nieves, J. L., Valero, E. M., & Garrote, E. (2013). Measurement of the optical transfer function using a white-dot pattern presented on a liquid-crystal display. Journal of the European Optical Society, 8

  • Park, S. C., Park, M. K., & Kang, M. G. (2003). Super-resolution image reconstruction: A technical overview. Signal processing magazine, IEEE, 20(3), 21–36.

  • Quabis, S., Dorn, R., Eberler, M., Glöckl, O., & Leuchs, G. (2001). The focus of light-theoretical calculation and experimental tomographic reconstruction. Applied Physics B, 72(1), 109–113 .

    Article  Google Scholar 

  • Reichenbach, S. E., Park, S. K., & Narayanswamy, R. (1991). Characterizing digital image acquisition devices. Optical Engineering, 30(2), 170–177.

    Article  Google Scholar 

  • Ryu, Z. M. (1991). Measurement of point spread function of thermal imager. Orlando’91 (pp. 469–474). Orlando: International Society for Optics and Photonics.

    Google Scholar 

  • Sambridge, M., Braun, J., & McQueen, H. (1995). Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophysical Journal International, 122(3), 837–857.

    Article  Google Scholar 

  • Samei, E., Flynn, M. J., & Reimann, D. A. (1998). A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Medical Physics, 25(1), 102–113.

    Article  Google Scholar 

  • Shih, Y., Guenter, B., & Joshi, N. (2012). Image enhancement using calibrated lens simulations. In Computer Vision–ECCV 2012 (pp. 42–56). Berlin: Springer.

  • Szeliski, R. (2010). Computer vision: Algorithms and applications. Berlin: Springer.

    MATH  Google Scholar 

  • Takenaga, T., Katsuragawa, S., Goto, M., Hatemura, M., Uchiyama, Y., & Shiraishi, J. (2015). Modulation transfer function measurement of CT images by use of a circular edge method with a logistic curve-fitting technique. Radiological Physics and Technology, 8(1), 53–59.

    Article  Google Scholar 

  • Torkildsen, H, Hovland, H., Opsahl, T., Haavardsholm, T., Nicolas, S., & Skauli, T. (2014). Characterization of a compact 6-band multifunctional camera based on patterned spectral filters in the focal plane. In SPIE defense+ security, international society for optics and photonics (pp. 908819–908819).

  • Tzannes, A. P., & Mooney, J. M. (1995). Measurement of the modulation transfer function of infrared cameras. Optical Engineering, 34(6), 1808–1817.

    Article  Google Scholar 

  • Ye, M., Wang, B., Uchida, M., Yanase, S., Takahashi, S., & Sato, S. (2012). Focus tuning by liquid crystal lens in imaging system. Applied Optics, 51(31), 7630–7635.

    Article  Google Scholar 

  • Zandhuis, J., Pycock, D., Quigley, S., & Webb, P. (1997). Sub-pixel non-parametric PSF estimation for image enhancement. IEE Proceedings-Vision, Image and Signal Processing, 144, 285–292.

    Article  Google Scholar 

  • Zong, Y., Brown, S. W., Meister, G., Barnes, R. A., & Lykke, K. R. (2007). Characterization and correction of stray light in optical instruments vol. (6744), pp. 67441L-1-67441L-11.

Download references

Acknowledgments

This research was supported by the Slovenian Research Agency, under Grants J7-6781, J2-5473, L2-5472 and L2-4072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurij Jemec.

Additional information

Communicated by Y. Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemec, J., Pernuš, F., Likar, B. et al. 2D Sub-pixel Point Spread Function Measurement Using a Virtual Point-Like Source. Int J Comput Vis 121, 391–402 (2017). https://doi.org/10.1007/s11263-016-0948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-016-0948-8

Keywords

Navigation