Argyriou, A., Evgeniou, T., & Pontil, M. (2007). Multi-task feature learning. In Advances in neural information processing systems, Cambridge, MA: The MIT Press.
Arnold, A., Nallapati, R., & Cohen, W. (2007). A comparative study of methods for transductive transfer learning. IEEE International Conference on Data Mining (Workshops), 77–82.
Aytar, Y., & Zisserman, A. (2011). Tabula rasa: Model transfer for object category detection. IEEE International Conference on Computer Vision, 2252–2259.
Bartels, R. H., & Stewart, G. (1972). Solution of the matrix equation ax+ xb= c [f4]. Communications of the ACM, 15(9), 820–826.
Article
Google Scholar
Belhumeur, P., Hespanha, J., & Kriegman, D. (2002). Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720.
Article
Google Scholar
Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.
Article
MATH
Google Scholar
Blitzer, J., McDonald, R., & Pereira, F. (2006). Domain adaptation with structural correspondence learning. In Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, (pp. 120–128).
Blitzer, J., Foster, D., & Kakade, S. (2011). Domain adaptation with coupled subspaces. Journal of Machine Learning Research-Proceedings Track, 15, 173–181.
Google Scholar
Cai, J. F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20, 1956–1982.
Article
MATH
MathSciNet
Google Scholar
Candès, E., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6), 717–772.
Article
MATH
MathSciNet
Google Scholar
Candes, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM.
Chen, M., Weinberger, K., & Blitzer, J. (2011). Co-training for domain adaptation. Advances in Neural Information Processing Systems.
Coppersmith, D., & Winograd, S. (1990). Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3), 251–280.
Article
MATH
MathSciNet
Google Scholar
Dai, W., Xue, G., Yang, Q., & Yu, Y. (2007). Co-clustering based classification for out-of-domain documents. In ACM SIGKDD International Conference on Knowledge Discovery And Data Mining (ACM), (pp. 210–219).
Dai, W., Xue, G.R., Yang, Q., & Yu, Y. (2007b). Transferring naive bayes classifiers for text classification. In AAAI Conference on Artificial Intelligence (pp. 540–545).
Dai, W., Yang, Q., Xue, G., & Yu, Y. (2007c). Boosting for transfer learning. In International Conference on Machine learning, ACM (pp. 193–200).
Daumé, H. (2007). Frustratingly easy domain adaptation. Annual Meeting-Association for Computational Linguistics, 45, 256–263.
Google Scholar
Daumé, H, I. I. I., & Marcu, D. (2006). Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research, 26(1), 101–126.
MATH
MathSciNet
Google Scholar
Duan, L., Tsang, I.W., Xu, D., & Chua, T.S. (2009). Domain adaptation from multiple sources via auxiliary classifiers. In International Conference on Machine Learning, ACM (pp. 289–296).
Duan, L., Xu, D., & Chang, S.F. (2012a). Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach. IEEE Conference on Computer Vision and Pattern Recognition, 1338–1345.
Duan, L., Xu, D., & Tsang, I. (2012b). Domain adaptation from multiple sources: A domain-dependent regularization approach. IEEE Transactions on Neural Networks and Learning Systems, 23(3), 504–518.
Article
Google Scholar
Duan, L., Xu, D., Tsang, I. W. H., & Luo, J. (2012c). Visual event recognition in videos by learning from web data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1667–1680.
Article
Google Scholar
Eckstein, J., & Bertsekas, D. (1992). On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 55(1), 293–318.
Article
MATH
MathSciNet
Google Scholar
Gao, J., Fan, W., Jiang, J., & Han, J. (2008). Knowledge transfer via multiple model local structure mapping. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM (pp. 283–291).
Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale sentiment classification: A deep learning approach. In International Conference on Machine Learning, ACM (pp. 513–520).
Gong, B., Shi, Y., Sha, F., & Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 2066–2073).
Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: An unsupervised approach. In IEEE International Conference on Computer Vision (pp. 999–1006).
Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. California Institute of Technology: Tech. rep.
He, X., & Niyogi, P. (2004). Locality preserving projections. In Advances in neural information processing systems, vol 16. Cambridge, MA: The MIT Press.
He, X., Cai, D., Yan, S., & Zhang, H. (2005). Neighborhood preserving embedding. IEEE International Conference on Computer Vision, 2, 1208–1213.
Google Scholar
Ho, J., Yang, M., Lim, J., Lee, K., & Kriegman, D. (2003). Clustering appearances of objects under varying illumination conditions, vol 1. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–11).
Hoffman, J., Rodner, E., Donahue, J., Saenko, K., & Darrell, T. (2013). Efficient learning of domain-invariant image representations. arXiv, preprint arXiv:13013224.
Huang, D., Sun, J., & Wang, Y. (2012). The BUAA-VISNIR face database instructions. http://irip.buaa.edu.cn/research/The_BUAA-VisNir_Face_Database_Instructions.pdf.
Jhuo, I. H., Liu, D., Lee, D., & Chang. S. F. (2012) Robust visual domain adaptation with low-rank reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 2168–2175).
Jiang, J., & Zhai, C. (2007). Instance weighting for domain adaptation in NLP. Annual Meeting-Association for Computational Linguistics, 45, 264–271.
Google Scholar
Jiang, W., Zavesky, E., Chang, S. F., & Loui, A. (2008). Cross-domain learning methods for high-level visual concept classification. In IEEE International Conference on Image Processing (pp. 161–164).
Keshavan, R., Montanari, A., & Oh, S. (2010). Matrix completion from noisy entries. The Journal of Machine Learning Research, 99, 2057–2078.
MathSciNet
Google Scholar
Kulis, B., Jain, P., & Grauman, K. (2009). Fast similarity search for learned metrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2143–2157.
Article
Google Scholar
Kulis, B., Saenko, K., & Darrell, T. (2011). What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1785–1792).
Lawrence, N., Platt, J. (2004). Learning to learn with the informative vector machine. In International Conference on Machine learning, ACM (pp. 65–72).
Lim, J., Salakhutdinov, R., & Torralba, A. (2011). Transfer learning by borrowing examples for multiclass object detection. In Advances in neural information processing systems. Cambridge, MA: The MIT Press.
Lin, Z., Chen, M., Wu, L., & Ma, Y. (2009). The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Technical Report, UILU-ENG-09-2215.
Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In International Conference on Machine Learning (pp. 663–670).
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184.
Article
Google Scholar
Lopez-Paz, D., Hernndez-Lobato, J., & Schölkopf, B. (2012). Semi-supervised domain adaptation with non-parametric copulas. In: Advances in neural information processing systems. Cambridge, MA: The MIT Press.
Lu, L., & Vidal, R. (2006). Combined central and subspace clustering for computer vision applications. In International Conference on Machine Learning, ACM (pp. 593–600).
Mihalkova, L., Huynh, T., & Mooney, R. (2007). Mapping and revising markov logic networks for transfer learning. In AAAI Conference on Artificial Intelligence (pp. 608–614).
Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.
Article
Google Scholar
Qi, G.J., Aggarwal, C., Rui, Y., Tian, Q., Chang, S., & Huang, T. (2011). Towards cross-category knowledge propagation for learning visual concepts. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 897–904).
Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A. (2007). Self-taught learning: Transfer learning from unlabeled data. In International Conference on Machine Learning (pp. 759–766).
Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.
Article
Google Scholar
Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. In European Computer Vision Conference (pp. 213–226).
Shao, M., Xia, S., & Fu, Y., (2011). Genealogical face recognition based on ub kinface database. In IEEE Conference on Computer Vision and Pattern Recognition (Workshop on Biometrics) (pp. 65–70).
Shao, M., Castillo, C., Gu, Z., & Fu, Y. (2012). Low-rank transfer subspace learning. In IEEE International Conference on Data Mining (pp. 1104–1109).
Si, S., Tao, D., & Geng, B. (2010). Bregman divergence-based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering, 22(7), 929–942.
Article
Google Scholar
Sun, Q., Chattopadhyay, R., Panchanathan, S., & Ye, J. (2011). A two-stage weighting framework for multi-source domain adaptation. In Advances in neural information processing systems. Cambridge, MA: The MIT Press.
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.
Article
Google Scholar
Wang, Z., Song, Y., & Zhang, C. (2008). Transferred dimensionality reduction. In Machine learning and knowledge discovery in databases (pp. 550–565). New York: Springer.
Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing Systems, 22, 2080–2088.
Google Scholar
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., & Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 40–51.
Google Scholar
Yang, J., Yan, R., & Hauptmann, A.G. (2007). Cross-domain video concept detection using adaptive svms. In International Conference on Multimedia, ACM (pp. 188–197).
Yang, J., Yin, W., Zhang, Y., & Wang, Y. (2009). A fast algorithm for edge-preserving variational multichannel image restoration. SIAM Journal on Imaging Sciences, 2(2), 569–592.
Article
MATH
MathSciNet
Google Scholar
Zhang, C., Ye, J., & Zhang, L. (2012). Generalization bounds for domain adaptation. In Advances in neural information processing systems, Cambridge, MA: The MIT Press.
Zhang, T., Tao, D., & Yang, J. (2008). Discriminative locality alignment. In European conference on computer vision (pp. 725–738). New York: Springer.