Skip to main content
Log in

Manifold transfer subspace learning based on double relaxed discriminative regression

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

By leveraging the labeled data samples of the source domain to learn the unlabeled data samples of the target domain, unsupervised domain adaptation (DA) has achieved promising performance. However, it is still a vital problem for unsupervised domain adaptation to deal with cross-domain distribution mismatch. Therefore, we present a new model framework for cross-domain image classification in the paper, which is termed manifold transfer subspace learning based on double relaxed discriminative regression (MTSL-DRDR). First, the global geometry information of the samples from the source and target domain can be preserved by utilizing the low-rank constraint. Second, the two transformation projections are employed to project both domains to a unified subspace, in which each data sample of the target domain can be represented by some samples from the source domain with the sparse and low-rank coefficient matrix. Third, the local structure information of the data points with the same semantics from the different domains is preserved by means of the adaptive weight graph based on the low-rank coefficient matrix. Last, for fully use the discriminative information of data from the source domain, the discriminant information of the source domain based on intra-class and inter-class graphs is encoded to the target domain. Our MTSL-DRDR algorithm is evaluated on challenging benchmark datasets, and a large number of experiment results show the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Belhumeur PN, Hepanha JP, Kriegman D (1997) Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  • Bertsekas DP (1982) Constrained optimization and Lagrange multiplier methods. Academic Press

    MATH  Google Scholar 

  • Cai J-F, Candès E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  • Chang HY, Zhang FL, Gao GW et al (2020) Graph-structure constraint and schatten p-norm based unsupervised domain adaptation for image classification. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02350-y

    Article  Google Scholar 

  • Deng WY, Lendasse A, Ong Y et al (2019) Domain adaption via feature selection on explicit feature map. IEEE Trans Neural Netw Learn Syst 30(4):1180–1190

    Article  MathSciNet  Google Scholar 

  • Eckstein J, Bertsekas DP (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Jhuo IH, Liu D, Lee DT et al. (2012) Robust visual domain adaptation with low-rank reconstruction. In CVPR, pp. 2168–2175.

  • Jiang WH, Gao HC, Lu W et al (2019) Stacked robust adaptively regularized auto-regressions for domain adaptation. IEEE Trans Knowl Data Eng 31(3):561–574

    Article  Google Scholar 

  • Kan SC, Cen Y, Cen YG et al (2021) Zero-shot learning to index on semantic trees for scalable image retrieval. IEEE Trans Image Process 30:501–516

    Article  Google Scholar 

  • Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055

  • Liu G, Lin Z, Yan S et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  • Liu F, Zhang GQ, Lu J (2020) Heterogeneous domain adaptation: an unsupervised approach. IEEE Trans Neural Netw Learn Syst 31(12):5588–5602

    Article  MathSciNet  Google Scholar 

  • Liu WF, Li JF, Liu BD et al (2021) Unified cross-domain classification via geometric and statistical adaptations. Pattern Recogn 110:107658

    Article  Google Scholar 

  • Liu ZH, Shi KM, Niu DM et al (2023) Dynamic classifier approximation for unsupervised domain adaptation. Signal Process 206:108915

    Article  Google Scholar 

  • Long M, Wang J, Ding G, et al. (2013) Transfer feature learning with joint distribution adaptation. ICCV, pp. 2200–2207

  • Long M, Wang J, Ding G, et al. (2014) Transfer joint matching for unsupervised domain adaptation. Proc. IEEE CVPR, Jun, pp. 1410–1417

  • Lu YW, Wang WJ, Yuan C et al (2021) Manifold transfer learning via discriminant regression analysis. IEEE Trans Multimedia 23:2056–2070

    Article  Google Scholar 

  • Lu YW, Wong WK, Zeng BQ et al (2023) Guided discrimination and correlation subspace learning for domain adaptation. IEEE Trans Image Process 32:2017–2032

    Article  Google Scholar 

  • Pan SJ, Tsang IW, Kwok JT et al (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw Learn Syst 22(2):199–210

    Article  Google Scholar 

  • Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint. Int J Comput Vision 109(1–2):74–93

    Article  MathSciNet  MATH  Google Scholar 

  • Si S, Tao D, Geng B (2010) Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7):929–942

    Article  Google Scholar 

  • Tao J, Xu H, Fu J (2019) Low-rank constrained latent domain adaptation co-regression for robust depression recognition. IEEE Access 7:145406–145425

    Article  Google Scholar 

  • Wang LC, Ding ZM, Fu Y (2019) Low-rank transfer human motion segmentation. IEEE Trans Image Process 28(2):1023–1034

    Article  MathSciNet  MATH  Google Scholar 

  • Xiang SM, Nie FP, Meng GF et al (2012) Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learn Syst 23(11):1738–1754

    Article  Google Scholar 

  • Xiong H, Wan R, Zhao J, Chen Z, Li X, Zhu Z, Huan J (2022) Grod: deep learning with gradients orthogonal decomposition for knowledge transfer, distillation, and adversarial training. ACM Trans Knowl Discov Data 16(6):117

    Article  Google Scholar 

  • Xu Y, Fang XZ, Wu J et al (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863

    Article  MathSciNet  MATH  Google Scholar 

  • Xu X, Lin KY, Yang Y et al (2022) Joint feature synthesis and embedding: adversarial cross-modal retrieval revisited. IEEE Trans Pattern Anal Mach Intell 44(6):3030–3047

    Article  Google Scholar 

  • Yan S, Xu D, Zhang B et al (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  • Zhang L, Zuo WM, Zhang D (2016) LSDT: Latent sparse domain transfer learning for visual adaptation. IEEE Trans Image Process 25(3):1177–1191

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Wang S, Huang G et al (2019) Manifold criterion guided transfer learning via intermediate domain generation. IEEE Trans. Neural Netw Learn Syst 30(12):3759–3773

    Article  MathSciNet  Google Scholar 

  • Zhang C, Li HX, Qian YH et al (2021) Pairwise relations oriented discriminative regression. IEEE Trans Circ Syst Video Technol 31(7):2646–2660

    Article  Google Scholar 

  • Zhang C, Li HX, Qian YH et al (2022) Locality-constrained discriminative matrix regression for robust face identification. IEEE Trans Neural Netw Learn Syst 33(3):1254–1268

    Article  Google Scholar 

  • Zhao C, Li HX, Chen CL et al (2022) Enhanced group sparse regularized nonconvex regression for face recognition. IEEE Trans Pattern Anal Mach Intell 44(5):2438–2452

    Google Scholar 

  • Zhu F, Gao J, Yang J et al (2022) Neighborhood linear discriminant analysis. Pattern Recogn 123:108422

    Article  Google Scholar 

Download references

Funding

This work was supported in part by NSFC of China (U1504610, 61971339).

Author information

Authors and Affiliations

Authors

Contributions

ZL wrote the main manuscript text, FZ, KZ, ZL and HH reviewed the manuscript.

Corresponding author

Correspondence to Zhonghua Liu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhu, F., Zhang, K. et al. Manifold transfer subspace learning based on double relaxed discriminative regression. Artif Intell Rev 56 (Suppl 1), 959–981 (2023). https://doi.org/10.1007/s10462-023-10547-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-023-10547-8

Keywords

Navigation