Skip to main content
Log in

A Wavelet Perspective on Variational Perceptually-Inspired Color Enhancement

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The issue of perceptually-inspired correction of color and contrast in digital images has been recently analyzed with the help of variational principles. These techniques allowed building a general framework in which the action of many already existing algorithms can be more easily understood and compared in terms of intensification of local contrast and control of dispersion around the average intensity value. In this paper we analyze this issue from the dual perspective of wavelet theory, showing that it is possible to build energy functionals of wavelet coefficients that lead to a multilevel perceptually-inspired color correction. By computing the Euler–Lagrange equations associated to the wavelet-based functionals we were able to find an analytical formula for the modification of wavelet detail coefficients that overcomes the problem of an ad-hoc selection based on empirical considerations. Besides these theoretical results, the wavelet perspective provides the computational advantage of generating much faster algorithms in comparison with the spatial variational framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. We recall that \(\psi \) has \(n\) vanishing moments if the following condition holds: \(\int _\mathbb{R } x^k \psi (x) \, dx = 0\) for all \(k=1,\ldots ,n\).

  2. As a functional parameter, \(\varphi \) can take infinite analytic forms. A thorough analysis of the model presented in this paper with different choices of \(\varphi \) is too long to reproduce here, thus we have decided to consider this issue in a separate paper.

References

  • Ambrosio, L., Gigli, N., & Savaré, G. (2005). Gradient flows in metric spaces and in the space of probability measures. Birkhauser: Lectures in Mathematics.

    MATH  Google Scholar 

  • Bertalmío, M., Caselles, V., & Provenzi, E. (2009). Issues about the retinex theory and contrast enhancement. International Journal of Computer Vision, 83, 101–119.

    Article  Google Scholar 

  • Bertalmío, M., Caselles, V., Provenzi, E., & Rizzi, A. (2007). Perceptual color correction through variational techniques. IEEE Transactions on Image Processing, 16, 1058–1072.

    Article  MathSciNet  Google Scholar 

  • Bradley, A. (1999). A wavelet visible difference predictor. IEEE Transactions on Image Processing, 8, 717–730.

    Article  Google Scholar 

  • Cho, D., & Bui, T., (2011). Image contrast enhancement in compressed wavelet domain. pp. 3421–3424.

  • Ciarlet, P. (1989). Introduction to numerical linear algebra and optimisation. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Daly, S. (1992). Visible differences predictor: an algorithm for the assessment of image fidelity. In Proceedings of SPIE 1666. Human Vision, Visual Processing, and Digital Display (vol. III, pp. 2–15).

  • Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Di Zenzo, S. (1986). A note on the gradient of multi-image. Computer Vision, Graphics, and Image Processing, 33, 116125.

    Article  Google Scholar 

  • Gonzales, R., & Woods, R. (2002). Digital image processing. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Held, S., Storath, M., Massopust, P., & Forster, B. (2010). Steerable wavelet frames based on the riesz transform. IEEE Transactions on Image Processing, 19(3), 653–667.

    Article  MathSciNet  Google Scholar 

  • Laine, A., Fan, J., & Schuler, S. (1994). Mammographic feature enhancement by multiscale analysis. IEEE Transactions on Medical Imaging, 13(4), 725–740.

    Article  Google Scholar 

  • Land, E. (1977). The Retinex theory of color vision. Scientific American, 237, 108–128.

    Article  MathSciNet  Google Scholar 

  • Land, E., & McCann, J. (1971). Lightness and Retinex theory. Journal of the Optical Society of America, 61(1), 1–11.

    Article  Google Scholar 

  • Li, Y., Sharan, L., & Adelson, E. (2005). Compressing and companding high dynamic range images with subband architecture. In ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005 (pp. 836–844).

  • Loza, A., Bull, D., & Achim, A. (2010). Automatic contrast enhancement of low-light image based on local statistics of wavelet coefficients. In 17th IEEE International Conference on Image Processing (ICIP) (pp. 3553–3556).

  • Lu, J., & Healy, D, Jr. (1994). Contrast enhancement of medical images using multiscale edge representation. In Proceedings of SPIE in Wavelet Applications (Vol. 2242, pp. 711–719).

  • Mallat, S. (1999). A wavelet tour of signal processing. New York: Academic Press.

    MATH  Google Scholar 

  • Michelson, A. (1927). Studies in optics. Chicago, IL: Chicago University Press.

    MATH  Google Scholar 

  • Palma-Amestoy, R., Provenzi, E., Bertalmío, M., & Caselles, V. (2009). A perceptually inspired variational framework for color enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3), 458–474.

    Article  Google Scholar 

  • Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America A, 7(10), 2032–2040.

    Article  Google Scholar 

  • Peli, E. (1997). In search of a contrast metric: Matching the perceived contrast of gabor patches at different phases and bandwidths. Vision Research, 37(23), 3217–3224.

    Article  Google Scholar 

  • Provenzi, E., De Carli, L., Rizzi, A., & Marini, D. (2005). Mathematical definition and analysis of the retinex algorithm. Journal of the Optical Society of America A, 22(12), 2613–2621.

    Article  MathSciNet  Google Scholar 

  • Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., & Marini, D. (2007). Random spray retinex: A new retinex implementation to investigate the local properties of the model. IEEE Transactions on Image Processing, 16, 162–171.

    Article  MathSciNet  Google Scholar 

  • Provenzi, E., Gatta, C., Fierro, M., & Rizzi, A. (2008). Spatially variant white patch and gray world method for color image enhancement driven by local contrast. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1757–1770.

    Article  Google Scholar 

  • Pu, T., & Ni, G. (2000). Contrast-based image fusion using the discrete wavelet transform. Optical Engineering, 39(8), 2075–2082.

    Article  Google Scholar 

  • Rizzi, A., Gatta, C., & Marini, D. (2003a). A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters, 24, 1663–1677.

    Article  Google Scholar 

  • Rizzi, A., Gatta, C., & Marini, D. (2003). Yaccd: Yet another color constancy database. In Proceedings of El. Im. 2003, IS &T/SPIEs International Symposium, Color Imaging VIII San Jose, California (USA) (Vol. 5008, pp. 24–35).

  • Sapiro, G., & Caselles, V. (1997). Histogram modification via differential equations. Journal of Differential Equations, 135, 238–266.

    Article  MATH  MathSciNet  Google Scholar 

  • Scheunders, P. (2002). A multivalued image wavelet representation based on multiscale fundamental forms. IEEE Transactions on Image Processing, 10(5), 568–575.

    Article  MathSciNet  Google Scholar 

  • Shapley, R., & Enroth-Cugell, C. (1984). Visual adaptation and retinal gain controls, Ch. 9. In Progress in Retinal Research (Vol. 3, pp. 263–346).

  • Starck, J., Murtagh, F., Candès, E., & Donoho, D. (2003). Gray and color image contrast enhancement by the curvelet transform. IEEE Transactions on Image Processing, 12(6), 706–717.

    Article  MathSciNet  Google Scholar 

  • Strang, G., & Nguyen, T. (1996). Wavelets and filter banks. Wellesley, MA: Wellesley-Cambridge Press.

    MATH  Google Scholar 

  • Tang, J., Liu, X., & Sun, Q. (2009). A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. Journal of Selected Topics in Signal Processing, 3(1), 74–80.

    Article  Google Scholar 

  • Velde, K. (1999). Multi-scale color image enhancement. International Conference on Image Processing, 3, 584–587.

    Google Scholar 

  • Weber, E., (1834). De pulsu, resorptione, audita et tactu—annotationes anatomicae et physiologicae (H.E. Ross, New York: Academic Press 1978, Trans.).

Download references

Acknowledgments

The authors acknowledge partial support by MICINN Project, reference MTM2009-08171, and by GRC reference 2009 SGR 773 funded by the Generalitat de Catalunya. Edoardo Provenzi also acknowledges FUI Project CEDCA. V. Caselles also acknowledges partial support by ”ICREA Acadèmia” prize for excellence in Research funded by the Generalitat de Catalunya and by the ERC Advanced Grant INPAINTING (Grant Agreement No.: 319899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Provenzi.

Appendix: Proof of proposition 1

Appendix: Proof of proposition 1

Let us begin by proving the existence of a minimum of \(\mathcal{E}_{w_j,\varphi ,\{a_{j,k}\},d^0_{j,k}}\). Let \(\{d_{j,k}^n\}\) a minimizing sequence of detail coefficients. Since \(\varphi \ge 0\), the sequence \(d^0_{j,k} \log \frac{d^0_{j,k}}{d_{j,k}^n} - \left( d^0_{j,k} - d_{j,k}\right) \ge 0 \) is bounded. Thus, modulo a subsequence, we may assume that \(\{d_{j,k}^n\}\) converges to, say, \(\{d_{j,k}\}\). Observe that since \(\varphi (r)\rightarrow \infty \) as \(r\rightarrow \infty \), the terms of the sequence \(\{d_{j,k}^n\}\) are bounded away from \(0\). Using this and the continuity of \(\varphi \), we have that \(\{d_{j,k}\}\) is a minimum of the energy.

Let us now pass to the computation of the Euler–Lagrange equations. We have to compute the first variation of the energy \(\mathcal{E}_{w_j,\varphi ,\{a_{j,k}\},d^0_{j,k}} = \mathcal{C}_{w_j,\varphi ,\{a_{j,k}\}} + \mathcal{D}_{d^0_{j,k}}\) with respect to each coefficient \(d_{j,k}\). The computation of the first variation of \(\mathcal{D}_{d^0_{j,k}}\) with respect to \(\{d_{j,k}\}\) is straightforward and gives:

$$\begin{aligned} \frac{\partial \mathcal{D}_{d^0_{j,k}}}{\partial \{d_{j,k}\}} = 1 - \frac{d^0_{j,k}}{d_{j,k}}. \end{aligned}$$
(13)

Let us consider now \(\mathcal{C}_{w_j,\varphi ,\{a_{j,k}\}}\): if we denote with \((\overline{j},\overline{k})\) an auxiliary couple of indices, then we have

$$\begin{aligned} \frac{\partial \mathcal{C}_{w_j,\varphi ,\{a_{j,k}\}}}{\partial \{d_{\overline{j}, \overline{k}}\}}&= \sum _{k\in \varOmega } w_j \, \varphi '\left( \frac{a_{j,k}}{d_{j,k}}\right) \frac{-a_{j,k}\delta _{j-\overline{j},k-\overline{k}}}{(d_{j,k})^2}\nonumber \\&= - w_{\overline{j}} \varphi '\left( \frac{a_{\overline{j},\overline{k}}}{d_{\overline{j},\overline{k}}}\right) \frac{a_{\overline{j},\overline{k}}}{(d_{\overline{j},\overline{k}})^2}, \end{aligned}$$
(14)

where \(\varphi ' \equiv \dfrac{d\varphi }{d\left( \frac{a_{\overline{j},\overline{k}}}{d_{\overline{j},\overline{k}}}\right) }\) and the Kronecker symbol

$$\begin{aligned} \delta _{j-\overline{j},k-\overline{k}} = \left\{ \begin{array}{ll} 1 &{} \text {if } j=\overline{j} \text { and } k=\overline{k};\\ 0 &{} \text {otherwise}, \end{array}\right. \end{aligned}$$

appears because of the derivative \(\frac{\partial d_{j,k}}{\partial d_{\overline{j}, \overline{k}}}\). Adding (13) and (14), this last expressed in terms the original couple of indices \((j,k)\), and setting the expression to 0 we get

$$\begin{aligned} 1 - \frac{d^0_{j,k}}{d_{j,k}} - w_j \varphi '\left( \frac{a_{j,k}}{d_{j,k}}\right) \frac{a_{j,k}}{(d_{j,k})^2} = 0. \end{aligned}$$
(15)

Multiplying by \(d_{j,k}\) and simplifying the algebraic expression, we arrive to the result stated in Proposition 1 for the generic function \(\varphi \). When \(\varphi \equiv \text {id}\) we obtain (12).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provenzi, E., Caselles, V. A Wavelet Perspective on Variational Perceptually-Inspired Color Enhancement. Int J Comput Vis 106, 153–171 (2014). https://doi.org/10.1007/s11263-013-0651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-013-0651-y

Keywords

Mathematics Subject Classification

Navigation