International Journal of Computer Vision

, Volume 106, Issue 2, pp 153–171 | Cite as

A Wavelet Perspective on Variational Perceptually-Inspired Color Enhancement

Article

Abstract

The issue of perceptually-inspired correction of color and contrast in digital images has been recently analyzed with the help of variational principles. These techniques allowed building a general framework in which the action of many already existing algorithms can be more easily understood and compared in terms of intensification of local contrast and control of dispersion around the average intensity value. In this paper we analyze this issue from the dual perspective of wavelet theory, showing that it is possible to build energy functionals of wavelet coefficients that lead to a multilevel perceptually-inspired color correction. By computing the Euler–Lagrange equations associated to the wavelet-based functionals we were able to find an analytical formula for the modification of wavelet detail coefficients that overcomes the problem of an ad-hoc selection based on empirical considerations. Besides these theoretical results, the wavelet perspective provides the computational advantage of generating much faster algorithms in comparison with the spatial variational framework.

Keywords

Local contrast enhancement Wavelets Color image processing Variational methods 

Mathematics Subject Classification

68U10 94A08 35A15 

References

  1. Ambrosio, L., Gigli, N., & Savaré, G. (2005). Gradient flows in metric spaces and in the space of probability measures. Birkhauser: Lectures in Mathematics.MATHGoogle Scholar
  2. Bertalmío, M., Caselles, V., & Provenzi, E. (2009). Issues about the retinex theory and contrast enhancement. International Journal of Computer Vision, 83, 101–119.CrossRefGoogle Scholar
  3. Bertalmío, M., Caselles, V., Provenzi, E., & Rizzi, A. (2007). Perceptual color correction through variational techniques. IEEE Transactions on Image Processing, 16, 1058–1072.CrossRefMathSciNetGoogle Scholar
  4. Bradley, A. (1999). A wavelet visible difference predictor. IEEE Transactions on Image Processing, 8, 717–730.CrossRefGoogle Scholar
  5. Cho, D., & Bui, T., (2011). Image contrast enhancement in compressed wavelet domain. pp. 3421–3424.Google Scholar
  6. Ciarlet, P. (1989). Introduction to numerical linear algebra and optimisation. Cambridge, MA: Cambridge University Press.Google Scholar
  7. Daly, S. (1992). Visible differences predictor: an algorithm for the assessment of image fidelity. In Proceedings of SPIE 1666. Human Vision, Visual Processing, and Digital Display (vol. III, pp. 2–15).Google Scholar
  8. Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM.CrossRefMATHGoogle Scholar
  9. Di Zenzo, S. (1986). A note on the gradient of multi-image. Computer Vision, Graphics, and Image Processing, 33, 116125.CrossRefGoogle Scholar
  10. Gonzales, R., & Woods, R. (2002). Digital image processing. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  11. Held, S., Storath, M., Massopust, P., & Forster, B. (2010). Steerable wavelet frames based on the riesz transform. IEEE Transactions on Image Processing, 19(3), 653–667.CrossRefMathSciNetGoogle Scholar
  12. Laine, A., Fan, J., & Schuler, S. (1994). Mammographic feature enhancement by multiscale analysis. IEEE Transactions on Medical Imaging, 13(4), 725–740.CrossRefGoogle Scholar
  13. Land, E. (1977). The Retinex theory of color vision. Scientific American, 237, 108–128.CrossRefMathSciNetGoogle Scholar
  14. Land, E., & McCann, J. (1971). Lightness and Retinex theory. Journal of the Optical Society of America, 61(1), 1–11.CrossRefGoogle Scholar
  15. Li, Y., Sharan, L., & Adelson, E. (2005). Compressing and companding high dynamic range images with subband architecture. In ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005 (pp. 836–844). Google Scholar
  16. Loza, A., Bull, D., & Achim, A. (2010). Automatic contrast enhancement of low-light image based on local statistics of wavelet coefficients. In 17th IEEE International Conference on Image Processing (ICIP) (pp. 3553–3556).Google Scholar
  17. Lu, J., & Healy, D, Jr. (1994). Contrast enhancement of medical images using multiscale edge representation. In Proceedings of SPIE in Wavelet Applications (Vol. 2242, pp. 711–719).Google Scholar
  18. Mallat, S. (1999). A wavelet tour of signal processing. New York: Academic Press.MATHGoogle Scholar
  19. Michelson, A. (1927). Studies in optics. Chicago, IL: Chicago University Press.MATHGoogle Scholar
  20. Palma-Amestoy, R., Provenzi, E., Bertalmío, M., & Caselles, V. (2009). A perceptually inspired variational framework for color enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3), 458–474.CrossRefGoogle Scholar
  21. Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America A, 7(10), 2032–2040.CrossRefGoogle Scholar
  22. Peli, E. (1997). In search of a contrast metric: Matching the perceived contrast of gabor patches at different phases and bandwidths. Vision Research, 37(23), 3217–3224.CrossRefGoogle Scholar
  23. Provenzi, E., De Carli, L., Rizzi, A., & Marini, D. (2005). Mathematical definition and analysis of the retinex algorithm. Journal of the Optical Society of America A, 22(12), 2613–2621.CrossRefMathSciNetGoogle Scholar
  24. Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., & Marini, D. (2007). Random spray retinex: A new retinex implementation to investigate the local properties of the model. IEEE Transactions on Image Processing, 16, 162–171.CrossRefMathSciNetGoogle Scholar
  25. Provenzi, E., Gatta, C., Fierro, M., & Rizzi, A. (2008). Spatially variant white patch and gray world method for color image enhancement driven by local contrast. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1757–1770.CrossRefGoogle Scholar
  26. Pu, T., & Ni, G. (2000). Contrast-based image fusion using the discrete wavelet transform. Optical Engineering, 39(8), 2075–2082.CrossRefGoogle Scholar
  27. Rizzi, A., Gatta, C., & Marini, D. (2003a). A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters, 24, 1663–1677.CrossRefGoogle Scholar
  28. Rizzi, A., Gatta, C., & Marini, D. (2003). Yaccd: Yet another color constancy database. In Proceedings of El. Im. 2003, IS &T/SPIEs International Symposium, Color Imaging VIII San Jose, California (USA) (Vol. 5008, pp. 24–35).Google Scholar
  29. Sapiro, G., & Caselles, V. (1997). Histogram modification via differential equations. Journal of Differential Equations, 135, 238–266.CrossRefMATHMathSciNetGoogle Scholar
  30. Scheunders, P. (2002). A multivalued image wavelet representation based on multiscale fundamental forms. IEEE Transactions on Image Processing, 10(5), 568–575.CrossRefMathSciNetGoogle Scholar
  31. Shapley, R., & Enroth-Cugell, C. (1984). Visual adaptation and retinal gain controls, Ch. 9. In Progress in Retinal Research (Vol. 3, pp. 263–346).Google Scholar
  32. Starck, J., Murtagh, F., Candès, E., & Donoho, D. (2003). Gray and color image contrast enhancement by the curvelet transform. IEEE Transactions on Image Processing, 12(6), 706–717.CrossRefMathSciNetGoogle Scholar
  33. Strang, G., & Nguyen, T. (1996). Wavelets and filter banks. Wellesley, MA: Wellesley-Cambridge Press.MATHGoogle Scholar
  34. Tang, J., Liu, X., & Sun, Q. (2009). A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. Journal of Selected Topics in Signal Processing, 3(1), 74–80.CrossRefGoogle Scholar
  35. Velde, K. (1999). Multi-scale color image enhancement. International Conference on Image Processing, 3, 584–587.Google Scholar
  36. Weber, E., (1834). De pulsu, resorptione, audita et tactu—annotationes anatomicae et physiologicae (H.E. Ross, New York: Academic Press 1978, Trans.).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Télécom ParisTechParisFrance
  2. 2.Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations