Abstract
In a recent paper Boykov et al. (LNCS, Vol. 3953, pp. 409–422, 2006) propose an approach for computing curve and surface evolution using a variational approach and the geo-cuts method of Boykov and Kolmogorov (International conference on computer vision, pp. 26–33, 2003). We recall in this paper how this is related to well-known approaches for mean curvature motion, introduced by Almgren et al. (SIAM Journal on Control and Optimization 31(2):387–438, 1993) and Luckhaus and Sturzenhecker (Calculus of Variations and Partial Differential Equations 3(2):253–271, 1995), and show how the corresponding problems can be solved with sub-pixel accuracy using Parametric Maximum Flow techniques. This provides interesting algorithms for computing crystalline curvature motion, possibly with a forcing term.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows. Theory, algorithms, and applications. Englewood Cliffs: Prentice-Hall.
Allard, W. K. (2007). Total variation regularization for image denoising, I. Geometric theory. SIAM Journal on Mathematical Analysis, 39(4), 1150–1190.
Almgren, R. (1993). Variational algorithms and pattern formation in dendritic solidification. Journal of Computational Physics, 106(2), 337–354.
Almgren, F., Taylor, J. E., & Wang, L.-H. (1993). Curvature-driven flows: a variational approach. SIAM Journal on Control and Optimization, 31(2), 387–438.
Alter, F., Caselles, V., & Chambolle, A. (2005). A characterization of convex calibrable sets in ℝN. Mathematische Annalen, 332(2), 329–366.
Babenko, M. A., Derryberry, J., Goldberg, A. V., Tarjan, R. E., & Zhou, Y. (2007). Experimental evaluation of parametric max-flow algorithms. In Lecture notes in computer science (Vol. 4252, pp. 256–269). Berlin: Springer.
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.
Bellettini, G., & Paolini, M. (1996). Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Mathematical Journal, 25(3), 537–566.
Bellettini, G., Novaga, M., & Paolini, M. (1999). Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces and Free Boundaries, 1(1), 39–55.
Bellettini, G., Caselles, V., Chambolle, A., & Novaga, M. (2006). Crystalline mean curvature flow of convex sets. Archive for Rational Mechanics and Analysis, 179(1), 109–152.
Boros, E., & Hammer, P. L. (2002). Pseudo-boolean optimization. Discrete Applied Mathematics, 123(1–3), 155–225.
Bouchitté, G. (1998). Recent convexity arguments in the calculus of variations. In Lecture notes from the 3rd int. summer school on the calculus of variations, Pisa.
Boykov, Y., & Kolmogorov, V. (2003). Computing geodesics and minimal surfaces via graph cuts. In International conference on computer vision, pp. 26–33.
Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–1137.
Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.
Boykov, Y., Kolmogorov, V., Cremers, D., & Delong, A. (2006). An integral solution to surface evolution PDEs via Geo-Cuts. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Lecture notes in computer science : Vol. 3953. European conference on computer vision (ECCV) (pp. 409–422). Graz, Austria, May 2006. Berlin: Springer.
Caselles, V., & Chambolle, A. (2006). Anisotropic curvature-driven flow of convex sets. Nonlinear Analysis, 65(8), 1547–1577.
Caselles, V., Chambolle, A., & Novaga, M. (2007). The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Modeling and Simulation, 6(3), 879–894.
Chambolle, A. (2004). An algorithm for mean curvature motion. Interfaces and Free Boundaries, 6(2), 195–218.
Chambolle, A. (2005). Total variation minimization and a class of binary MRF models. In Lecture notes in computer science. Energy minimization methods in computer vision and pattern recognition (pp. 136–152). Berlin: Springer.
Chambolle, A., & Novaga, M. (2007). Approximation of the anisotropic mean curvature flow. Mathematical Models and Methods in the Applied Sciences, 17(6), 833–844.
Chambolle, A., & Novaga, M. (2008). Implicit time discretization of the mean curvature flow with a discontinuous forcing term. Interfaces and Free Boundaries, 10(3), 283–300.
Chan, T. F., & Esedoḡlu, S. (2005). Aspects of total variation regularized L 1 function approximation. SIAM Journal on Applied Mathematics, 65(5), 1817–1837 (electronic).
Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understanding, 53(2), 211–218.
Combettes, P. L., & Wajs, V. R. (2005). Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation, 4(4), 1168–1200 (electronic).
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. Cambridge: MIT Press.
Cunningham, W. H. (1985). On submodular function minimization. Combinatoria, 5, 185–192.
Darbon, J. (2005) Total variation minimization with L 1 data fidelity as a contrast invariant filter. In Proceedings of the 4th international symposium on image and signal processing and analysis (ISPA 2005), Zagreb, Croatia, September 2005.
Darbon, J., & Sigelle, M. (2006). Image restoration with discrete constrained total variation part i: fast and exact optimization. Journal of Mathematical Imaging and Vision, 26(3), 261–276.
Eisner, M. J., & Severance, D. G. (1976). Mathematical techniques for efficient record segmentation in large shared databases. Journal of the ACM, 23(4), 619–635.
Ekeland, I., & Témam, R. (1999). Classics in applied mathematics : Vol. 28. Convex analysis and variational problems. Philadelphia: SIAM. (English ed., translated from the French).
Federer, H. (1969). Geometric measure theory. New York: Springer.
Freedman, D., & Drineas, P. (2005). Energy minimization via graph cuts: settling what is possible. In IEEE computer society conference on computer vision and pattern recognition (CVPR) (pp. 939–946).
Gallo, G., Grigoriadis, M. D., & Tarjan, R. E. (1989). A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1), 30–55.
Giusti, E. (1984). Monographs in mathematics : Vol. 80. Minimal surfaces and functions of bounded variation. Basel: Birkhäuser.
Goldberg, A. V., & Tarjan, R. E. (1986). A new approach to the maximum flow problem. In STOC’86: proceedings of the eighteenth annual ACM symposium on theory of computing (pp. 136–146). New York: ACM Press.
Goldfarb, D., & Yin, Y. (2007). Parametric maximum flow algorithms for fast total variation minimization. Technical report, Rice University (2007).
Greig, D. M., Porteous, B. T., & Seheult, A. H. (1989). Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society Series B, 51, 271–279.
Grötschel, M., Lovász, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatoria, 1, 169–197.
Hochbaum, D. S. (2001). An efficient algorithm for image segmentation, Markov random fields and related problems. Journal of the ACM, 48(4), 686–701 (electronic).
Hochbaum, D. S. (2005). Complexity and algorithms for convex network optimization and other nonlinear problems. A Quarterly Journal of Operations Research, 3(3), 171–216.
Iwata, S., Fleischer, L., & Fujishige, S. (2000). A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. In STOC’00: Proceedings of the thirty-second annual ACM symposium on theory of computing (pp. 97–106). New York: ACM.
Juan, O., & Boykov, Y. (2006). Active graph cuts. In Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition (CVPR), (pp. 1023–1029).
Kholi, P., & Torr, P. (2005). Efficient solving dynamic Markov random fields using graph cuts. In Proceedings of the 10th international conference on computer vision (pp. 922–929).
Kolmogorov, V., & Zabih, R. (2002). What energy functions can be minimized via graph cuts? In European conference on computer vision (Vol. 3, pp. 65–81), May 2002.
Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(26), 147–159.
Kolmogorov, V., Boykov, Y., & Rother, C. (2007). Applications of parametric maxflow in computer vision. In Proceedings of the IEEE 11th international conference on computer vision (ICCV 2007) (pp. 1–8).
Lee, J. (2004). A first course in combinatorial optimization. Cambridge: Cambridge University Press.
Lovász, L. (1983). Submodular functions and convexity. In Mathematical programming: the state of the art (pp. 235–257). Bonn, 1982. Berlin: Springer.
Luckhaus, S., & Sturzenhecker, T. (1995). Implicit time discretization for the mean curvature flow equation. Calculus of Variations and Partial Differential Equations, 3(2), 253–271.
McCormick, S. T. (1996) Fast algorithms for parametric scheduling come from extensions to parametric maximum flow. In Proceedings of the twenty-eighth annual ACM symposium on theory of computing (pp. 319–328).
Murota, K. (2003). SIAM monographs on discrete mathematics and applications. Discrete convex analysis. Philadelphia: SIAM.
Nesterov, Y. (2004). Introductory lectures on convex optimization: a basic course. Dordrecht: Kluwer.
Nesterov, Y. (2007) Gradient methods for minimizing composite objective function. Technical report, CORE discussion paper 2007/76, Catholic University of Louvain (2007).
Paolini, M., & Pasquarelli, F. (2000). Numerical simulation of crystalline curvature flow in 3D by interface diffusion. In GAKUTO international series. Mathematical sciences and applications : Vol. 14. Free boundary problems: theory and applications, II (pp. 376–389). Chiba, 1999. Tokyo: Gakkōtosho.
Picard, J. C., & Ratliff, H. D. (1975). Minimum cuts and related problems. Networks, 5(4), 357–370.
Rockafellar, R. T. (1997). Princeton landmarks in mathematics. Convex analysis. Princeton: Princeton University Press (Reprint of the 1970 original Princeton paperbacks).
Rouy, E., & Tourin, A. (1992). A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis, 29(3), 867–884.
Schrijver, A. (2000). A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory (B), 80, 436–355.
Sethian, J. A. (1999). Fast marching methods. SIAM Review, 41(2), 199–235 (electronic).
Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40(9), 1528–1538.
Author information
Authors and Affiliations
Corresponding author
Additional information
A. Chambolle’s research supported by ANR project “MICA”, grant ANR-08-BLAN-0082.
J. Darbon’s research supported by ONR grant N000140710810.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Chambolle, A., Darbon, J. On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows. Int J Comput Vis 84, 288–307 (2009). https://doi.org/10.1007/s11263-009-0238-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-009-0238-9