International Journal of Computer Vision

, Volume 81, Issue 3, pp 317–330 | Cite as

Spectral Curvature Clustering (SCC)

Open Access
Article

Abstract

This paper presents novel techniques for improving the performance of a multi-way spectral clustering framework (Govindu in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 1150–1157, 2005; Chen and Lerman, 2007, preprint in the supplementary webpage) for segmenting affine subspaces. Specifically, it suggests an iterative sampling procedure to improve the uniform sampling strategy, an automatic scheme of inferring the tuning parameter from the data, a precise initialization procedure for K-means, as well as a simple strategy for isolating outliers. The resulting algorithm, Spectral Curvature Clustering (SCC), requires only linear storage and takes linear running time in the size of the data. It is supported by theory which both justifies its successful performance and guides our practical choices. We compare it with other existing methods on a few artificial instances of affine subspaces. Application of the algorithm to several real-world problems is also discussed.

Keywords

Hybrid linear modeling Multi-way spectral clustering Polar curvature Iterative sampling Motion segmentation Face clustering 

References

  1. Agarwal, S., Branson, K., & Belongie, S. (2006). Higher order learning with graphs. In Proceedings of the 23rd international conference on machine learning (Vol. 148, pp. 17–24). Google Scholar
  2. Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., & Belongie, S. (2005). Beyond pairwise clustering. In Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 2, pp. 838–845). Google Scholar
  3. Bader, B., & Kolda, T. (2004). Matlab tensor classes for fast algorithm prototyping (Technical Report SAND2004-5187). Sandia National Laboratories. Google Scholar
  4. Basri, R., & Jacobs, D. (2003). Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 218–233. CrossRefGoogle Scholar
  5. Bradley, P., & Mangasarian, O. (2000). k-plane clustering. Journal of Global Optimization, 16(1), 23–32. MATHCrossRefMathSciNetGoogle Scholar
  6. Brand, M. (2003). Fast online SVD revisions for lightweight recommender systems. In Proc. SIAM international conference on data mining. Google Scholar
  7. Chen, G., & Lerman, G. (2007, submitted). Curvature-driven diffusion and hybrid flat-surfaces modeling. Foundations of Computational Mathematics. Latest version available at the supplementary webpage. Google Scholar
  8. Drineas, P., Kannan, R., & Mahoney, M. (2006). Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication. SIAM Journal on Computing, 36(1), 132–157. MATHCrossRefMathSciNetGoogle Scholar
  9. Epstein, R., Hallinan, P., & Yuille, A. (1995). 5±2 eigenimages suffice: An empirical investigation of low-dimensional lighting models. In IEEE workshop on physics-based modeling in computer vision (pp. 108–116). Google Scholar
  10. Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660. CrossRefGoogle Scholar
  11. Govindu, V. (2005). A tensor decomposition for geometric grouping and segmentation. In Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 1150–1157). Google Scholar
  12. Gruber, P., & Theis, F. (2006). Grassmann clustering. In Proc. EUSIPCO 2006. Florence, Italy. Google Scholar
  13. Haro, G., Randall, G., & Sapiro, G. (2006). Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds. Neural Information Processing Systems. Google Scholar
  14. Ho, J., Yang, M., Lim, J., Lee, K., & Kriegman, D. (2003). Clustering appearances of objects under varying illumination conditions. In Proceedings of international conference on computer vision and pattern recognition (Vol. 1, pp. 11–18). Google Scholar
  15. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430. CrossRefGoogle Scholar
  16. Kanatani, K. (2001). Motion segmentation by subspace separation and model selection. In Proc. of 8th ICCV (Vol. 3, pp. 586–591). Vancouver, Canada. Google Scholar
  17. Kanatani, K. (2002). Evaluation and selection of models for motion segmentation. In 7th ECCV (Vol. 3, pp. 335–349). Google Scholar
  18. Lerman, G., & Whitehouse, J. T. (2008a). On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions. Journal of Approximation Theory. doi:10.1016/j.jat.2008.03.005. See also http://front.math.ucdavis.edu/0805.1430.
  19. Lerman, G., & Whitehouse, J. T. (2008b). High-dimensional Menger-type curvatures—part I: Geometric multipoles and multiscale inequalities. http://front.math.ucdavis.edu/0805.1425.
  20. Lerman, G., & Whitehouse, J. T. (2008c). High-dimensional Menger-type curvatures—part II: d-Separation and a menagerie of curvatures. http://front.math.ucdavis.edu/0809.0137.
  21. Lerman, G., & Whitehouse, J. T. (2008d, in preparation). Least squares approximations for probability measures via multi-way curvatures. Will appear at the supplementary webpage once ready. Google Scholar
  22. Ma, Y., Yang, A. Y., Derksen, H., & Fossum, R. (2008). Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Review, 50(3), 413–458. MATHCrossRefMathSciNetGoogle Scholar
  23. Medioni, G., Lee, M.-S., & Tang, C.-K. (2000). A computational framework for segmentation and grouping. Amsterdam: Elsevier. MATHGoogle Scholar
  24. Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems (Vol. 14). Google Scholar
  25. Shashua, A., Zass, R., & Hazan, T. (2006). Multi-way clustering using super-symmetric non-negative tensor factorization. In ECCV06 (Vol. IV, pp. 595–608). Google Scholar
  26. Souvenir, R., & Pless, R. (2005). Manifold clustering. In The 10th international conference on computer vision (ICCV 2005). Google Scholar
  27. Sugaya, Y., & Kanatani, K. (2004). Multi-stage unsupervised learning for multi-body motion segmentation. IEICE Transactions on Information and Systems, E87–D(7), 1935–1942. Google Scholar
  28. Tipping, M., & Bishop, C. (1999). Mixtures of probabilistic principal component analysers. Neural Computation, 11(2), 443–482. CrossRefGoogle Scholar
  29. Tseng, P. (1999). Nearest q -flat to m points (Technical report). Google Scholar
  30. Vidal, R., Ma, Y., & Sastry, S. (2005). Generalized principal component analysis (GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1945–1959. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations