Skip to main content

Advertisement

Log in

Two novel phages, Klebsiella phage GADU21 and Escherichia phage GADU22, from the urine samples of patients with urinary tract infection

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Phages are found in a wide variety of places where bacteria exist including body fluids. The aim of the present study was to isolate phages from the urine samples of patients with urinary tract infection. The 10 urine samples were cultured to isolate bacteria and also used as phage sources against the isolated bacteria. From 10 urine samples with positive cultures, 3 phages were isolated (33%) and two of them were further studied. The Klebsiella phage GADU21 and Escherichia phage GADU22 phages infected Klebsiella pneumonia and Escherichia coli, respectively. Among the tested 14 species for host range analysis, the Klebsiella phage GADU21 was able to infect two species which are Klebsiella pneumonia and Proteus mirabilis, and Escherichia phage GADU22 was able to infect four species which are Shigella flexneri, Shigella sonnei and Escherichia coli. Among different isolates of the indicator bacteria for each phage, GADU21 infected half of the tested 20 Klebsiella pneumonia isolates while GADU22 infected 85% of the tested 20 E. coli isolates. The genome sizes and GC ratios were 75,968 bp and 44.4%, and 168,023 bp and 35.3% for GADU21 and GADU22, respectively. GADU21 and GADU22 were both lytic and had no antibiotic resistance and virulence genes. GADU21 was homologue with Klebsiella phage vB_KpP_FBKp27 but only 88% of the genome was covered by this phage. The non-covered parts of the GADU21 genome included genes for tail-fiber-proteins and HNH-endonuclease. GADU22 had 94.8% homology with Escherichia phage vB_Eco_OMNI12 and had genes for immunity proteins. Phylogenetic analysis showed GADU21 and GADU22 were members of Schitoviridae family and Efbeekayvirus genus and Straboviridae family and Tevenvirinae genus, respectively. VIRIDIC analysis classified these phages in new species clusters. Our study demonstrated the possibility to use infected body fluids as phage sources to isolate novel phages. GADU21 is the first reported Klebsiella phage isolated from human body fluid. The absence of virulence and antibiotic resistance genes in their genomes makes the phages a potential therapeutic tool against infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The genome sequences of Klebsiella phage GADU21 and Escherichia phage GADU22 were deposited in GenBank under the accession number ON004963.1 and OQ944321, respectively.

References

  1. D’Herelle F (2007) On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D’Herelle, presented by Mr. Roux. 1917. Res Microbiol 158(7):553–554

    Article  PubMed  Google Scholar 

  2. d’Herelle F (1931) Phage as a treatment in acute medical and surgical infections. Bull N Y Acad Med 7(5):329–348

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Łusiak-Szelachowska M, Górski A (2020) Phage therapy in Poland—a centennial journey to the first ethically approved treatment facility in Europe. Front Microbiol 11:1056

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aswani VH, Shukla SK (2021) An early history of phage therapy in the United States: is it time to reconsider? Clin Med Res 19(2):82–89

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barron M (2022). Phage therapy: past, present and future. https://asm.org/Articles/2022/August/Phage-Therapy-Past,-Present-and-Future

  6. Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S (2021) Phages for ESKAPE: role in pathogenicity and measures of control. Expert Rev Anti Infect Ther 19(7):845–865

    Article  CAS  PubMed  Google Scholar 

  7. Denamur E, Clermont O, Bonacorsi S, Gordon D (2021) The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 19(1):37–54

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Kumar S, Zhang L, Wu H (2022) Klebsiella pneumonia and its antibiotic resistance: a bibliometric analysis. BioMed Res Int. https://doi.org/10.1155/2022/1668789

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 12(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karaynir A, Salih H, Bozdoğan B, Güçlü Ö, Keskin D (2022) Isolation and characterization of Brochothrix phage ADU4. Virus Res 321:198902

    Article  CAS  PubMed  Google Scholar 

  11. Pacífico C, Hilbert M, Sofka D, Dinhopl N, Pap IJ, Aspöck C et al (2019) Natural occurrence of Escherichia coli-infecting phages in clinical samples. Front Microbiol 10:2484

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ali S, Karaynir A, Salih H, Öncü S, Bozdoğan B (2023) Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage. Virus Res 326:199049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salih H, Karaynir A, Yalcin M, Oryasin E, Holyavkin C, Basbulbul G, Bozdogan B (2022) Metagenomic analysis of wastewater phageome from a University Hospital in Turkey. Arch Microbiol 204(6):353

    Article  CAS  PubMed  Google Scholar 

  14. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S et al (2018) KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36(7):566–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A (2020) Using SPAdes de novo assembler. Curr Protoc Bioinform 70(1):e102

    Article  CAS  Google Scholar 

  17. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5(1):8365

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(suppl_2):W5–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lowe TM, Chan PP (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54–W57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:1–9

    Article  Google Scholar 

  22. Wintersinger JA, Wasmuth JD (2015) Kablammo: an interactive, web-based BLAST results visualizer. Bioinformatics 31(8):1305–1306

    Article  PubMed  Google Scholar 

  23. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(suppl_2):W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hockenberry AJ, Wilke CO (2021) BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains. PeerJ 9:e11396

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O (2013) PathogenFinder-distinguishing friend from foe using bacterial whole genome sequence data. PLoS ONE 8(10):e77302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Aarestrup FM (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrobial Chemother 75(12):3491–3500

    Article  CAS  Google Scholar 

  27. Malberg Tetzschner AM, Johnson JR, Johnston BD, Lund O, Scheutz F (2020) In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J Clin Microbiol 58(10):10–1128

    Article  Google Scholar 

  28. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Stevens R (2020) The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48(D1):D606–D612

    CAS  PubMed  Google Scholar 

  29. Boeckaerts D, Stock M, De Baets B, Briers Y (2022) Identification of phage receptor-binding protein sequences with hidden Markov models and an extreme gradient boosting classifier. Viruses 14(6):1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7(1):8292

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33(15):2379–2380

    Article  CAS  PubMed  Google Scholar 

  32. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  Google Scholar 

  33. Navarro F, Muniesa M (2017) Phages in the human body. Front Microbiol 8:566

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanmukh SG, Admella J, Moya-Andérico L, Fehér T, Arévalo-Jaimes BV, Blanco-Cabra N, Torrents E (2023) Accessing the in vivo efficiency of clinically isolated phages against uropathogenic and invasive biofilm-forming Escherichia coli strains for phage therapy. Cells 12(3):344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown-Jaque M, Muniesa M, Navarro F (2016) Phages in clinical samples can interfere with microbiological diagnostic tools. Sci Rep 6(1):1–8

    Article  Google Scholar 

  36. Choi M, Hegerle N, Nkeze J, Sen S, Jamindar S, Nasrin S et al (2020) The diversity of lipopolysaccharide (O) and capsular polysaccharide (K) antigens of invasive Klebsiella pneumoniae in a multi-country collection. Front Microbiol 11:1249

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Sousa JA, Buffet A, Haudiquet M, Rocha EP, Rendueles O (2020) Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation. ISME J 14(12):2980–2996

    Article  PubMed  PubMed Central  Google Scholar 

  38. Palusiak A (2022) Proteus mirabilis and Klebsiella pneumoniae as pathogens capable of causing co-infections and exhibiting similarities in their virulence factors. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.991657

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim SH, Adeyemi DE, Park MK (2021) Characterization of a new and efficient polyvalent phage infecting E. coli O157:H7 Salmonella spp., and Shigella sonnei. Microorganisms 9(10):2105. https://doi.org/10.3390/microorganisms9102105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Doore SM, Schrad JR, Dean WF, Dover JA, Parent KN (2018) Shigella phages isolated during a dysentery outbreak reveal uncommon structures and broad species diversity. J Virol 92(8):e02117-e2217

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee H, Ku HJ, Lee DH, Kim YT, Shin H, Ryu S, Lee JH (2016) Characterization and genomic study of the novel phage HY01 infecting both Escherichia coli O157: H7 and Shigella flexneri: potential as a biocontrol agent in food. PLoS ONE 11(12):e0168985

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang Q, Deng S, Xu J, Farooq U, Yang T, Chen W (2021) Poly (indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis. Microchim Acta 188:1–13

    Article  Google Scholar 

  43. Henning U, Jann K (1979) Two-component nature of phage T4 receptor activity in Escherichia coli K-12. J Bacteriol 137(1):664–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Philipson CW, Voegtly LJ, Lueder MR, Long KA, Rice GK, Frey KG (2018) Characterizing phage genomes for therapeutic applications. Viruses 10(4):188

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Mi Z, Mi L, Huang Y, Li P, Liu H (2019) Identification and characterization of capsule depolymerase Dpo48 from Acinetobacter baumannii phage IME200. PeerJ 7:e6173

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sun S, Gao S, Kondabagil K, Xiang Y, Rossmann MG, Rao VB (2012) Structure and function of the small terminase component of the DNA packaging machine in T4-like phages. Proc Natl Acad Sci 109(3):817–822

    Article  PubMed  Google Scholar 

  47. Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G (2022) Viral small terminase: a divergent structural framework for a conserved biological function. Viruses 14(10):2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kala S, Cumby N, Sadowski PD, Hyder BZ, Kanelis V, Davidson AR, Maxwell KL (2014) HNH proteins are a widespread component of phage DNA packaging machines. Proc Natl Acad Sci 111(16):6022–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bailly-Bechet M, Vergassola M, Rocha E (2007) Causes for the intriguing presence of tRNAs in phages. Genome Res 17(10):1486–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Z, Horton JR, Zhou L, Zhang XJ, Dong A, Zhang X (2003) Structure of the phage T4 DNA adenine methyltransferase. Nat Struct Mol Biol 10(10):849–855

    Article  CAS  Google Scholar 

  51. Wang GR, Vianelli A, Goldberg EB (2000) Phage T4 self-assembly: in vitro reconstitution of recombinant GP2 into infectious phage. J Bacteriol 182(3):672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hobbs SJ, Wein T, Lu A, Morehouse BR, Schnabel J, Leavitt A et al (2022) Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 605(7910):522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Skorupski K, Tomaschewski J, Rüger W, Simon LD (1988) A phage T4 gene which functions to inhibit Escherichia coli Lon protease. J Bacteriol 170(7):3016–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsueh BY, Severin GB, Elg CA, Waldron EJ, Kant A, Wessel AJ (2022) Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat Microbiol 7(8):1210–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abremski K, Black LW (1979) The function of phage T4 internal protein I in a restrictive strain of Escherichia coli. Virology 97(2):439–447

    Article  CAS  PubMed  Google Scholar 

  56. Kanamaru S, Uchida K, Nemoto M, Fraser A, Arisaka F, Leiman PG (2020) Structure and function of the T4 spackle protein Gp61. 3. Viruses 12(10):1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Phage T4 genome. Microbiol Mol Biol Rev 67(1):86–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Korf IH, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M (2019) Still something to discover: novel insights into Escherichia coli phage diversity and taxonomy. Viruses 11(5):454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fabijan AP, Kamruzzaman M, Martinez-Martin D, Venturini C, Mickiewicz K, Flores-Rodriguez N (2021) L-form switching confers antibiotic, phage and stress tolerance in pathogenic Escherichia coli. biorxiv. https://doi.org/10.1101/2021.06.21.449206

    Article  Google Scholar 

  60. Fokine A, Islam MZ, Zhang Z, Bowman VD, Rao VB, Rossmann MG (2011) Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like phage. J Virol 85(16):8141–8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murphy J, Klumpp J, Mahony J, O’Connell-Motherway M, Nauta A, van Sinderen D (2014) Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity. BMC Genomics 15(1):1–11

    Article  Google Scholar 

  62. Mijbel Ali B, Gatea Kaabi SA, Al-Bayati MA, Musafer HK (2021) A novel phage cocktail therapy of the urinary tract infection in a mouse model. Arch Razi Inst 76(5):1229–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Le T, Nang SC, Zhao J, Yu HH, Li J, Gill JJ (2023) Therapeutic potential of intravenous phage as standalone therapy for recurrent drug-resistant urinary tract infections. Antimicrobial Agents Chemother 67(4):e00037-e42

    Article  Google Scholar 

Download references

Acknowledgements

The author, Hanife Salih Doğan, is supported by YOK 100/2000 fellowship program during the PhD program and 2211/A National PhD Scholarship Program, The Scientific and Technological Research Council of Turkey.

Funding

No funding was received for this research/project.

Author information

Authors and Affiliations

Authors

Contributions

HSD: Data curation, investigation, methodology, writing—original draft, writing—review and editing, AK: Conceptualization, investigation, methodology, ÜY: Methodology, resources, BB: Methodology, resources, TH: Conceptualization, resources, supervision, writing—review and editing, BB: Conceptualization, funding acquisition, project administration, supervision, writing—review and editing.

Corresponding author

Correspondence to Hanife Salih Doğan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study is approved under the ethical approval code of Ethical Committee of Health Sciences University Gülhane Training and Research Hospital IC-2020/315. Informed consent from the participants was obtained.

Additional information

Edited by Andrew Millard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11262_2024_2052_MOESM1_ESM.jpg

Figure S1. VipTree analysis of Klebsiella phage GADU21 and Escherichia phage GADU22 with reference dsDNA viruses (A) GADU21 and GADU22 phages were represented with stars. The outer ring indicates hosts of the phages, and the inner ring indicates the family to which the phages belong. The hosts of these phages were founded to belong to Gammaproteobacteria (Pseudomonata) phylum. (B) The taxonomic relationship for GADU21 and GADU22 phages and their relatives showed that GADU21 phage is a member of Schitoviridae family and Efbeekayvirus genus and GADU22 phage is a member of Straboviridae family and Tevenvirinae genus. Supplementary file1 (JPG 290 kb)

Supplementary file2 (DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salih Doğan, H., Karaynir, A., Yilmaz, Ü.İ. et al. Two novel phages, Klebsiella phage GADU21 and Escherichia phage GADU22, from the urine samples of patients with urinary tract infection. Virus Genes 60, 208–221 (2024). https://doi.org/10.1007/s11262-024-02052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-024-02052-z

Keywords

Navigation