Skip to main content
Log in

Comparative genomics of the Neodiprion sertifer nucleopolyhedrovirus from Turkey with the fewest ORFs among baculoviruses

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The complete genome of a European pine sawfly Neodiprion sertifer nucleopolyhedrovirus (NeseNPV-TR) was sequenced and characterized from next-generation sequencing data of N. sertifer larva from Türkiye. This genome was analyzed and compared to previously reported genomes of baculoviruses. The baculovirus phylogeny was reconstructed and the species identity of the NeseNPV-TR was delineated using K2P distance. The length of the genome was 82,052 bp, with a G + C content of 33.28%. It contained 83 putative ORFs, including 38 baculovirus core genes, three lepidopteran baculovirus core genes, and three non-conserved genes. It had five hrs with 20.6% overall mean distance on average. The pairwise K2P distances of lef-8, lef-9, and polh genes and combinations of three genes and 38 genes between NeseNPV-TR and NeseNPV were slightly higher than the specified threshold values for species demarcation. The most variable genes were lef-2, helicase, p40, desmoplakin, pif7, p6.9, vp91, and vp39, while the most conserved were lef-8, lef-9, odv-e18, pif2, and lef-5 among baculoviruses. The genome of NeseNPV-TR is smaller and contains the fewest ORFs among baculoviruses. Some of unassigned ORFs had conserved domains and hence, we suggest further investigation to determine their structural and functional roles. Phylogenetic analyses confirmed its position within genus Gammabaculovirus. Taking into account the phylogenetic position, K2P distances, and NJ tree, the NeseNPV-TR can be classified in the same species (Gammabaculovirus nesertiferis) with NeseNPV. The different divergence rates in the baculovirus core genes may be related with different selection pressures acting on the genes. The lower genetic diversity of Group I alphabaculoviruses is most probably due to recent emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The genome sequence generated in this study was deposited in the GenBank database under the Accession Number OP426321.

References

  1. Miele SAB, Garavaglia MJ, Belaich MN, Ghiringhelli PD (2011) Baculovirus: molecular insights on their diversity and conservation. Int J Evol Biol 2011:1–15. https://doi.org/10.4061/2011/379424

    Article  CAS  Google Scholar 

  2. Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402. https://doi.org/10.1016/j.sbi.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Herniou EA, Jehle JA (2007) Baculovirus phylogeny and evolution. Curr Drug Targets 8:1043–1050. https://doi.org/10.2174/138945007782151306

    Article  CAS  PubMed  Google Scholar 

  4. Szewczyk B, Hoyos-Carvajal L, Paluszek M, Skrzecz I, Lobo de Souza M (2006) Baculoviruses—re-emerging biopesticides. Biotechnol Adv 24:143–160. https://doi.org/10.1016/j.biotechadv.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266. https://doi.org/10.1007/s00705-006-0763-6

    Article  CAS  PubMed  Google Scholar 

  6. Jehle JA, Lange M, Wang H, Hu Z, Wang Y, Hauschild R (2006) Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346:180–193. https://doi.org/10.1016/j.virol.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  7. Bulach DM, Kumar CA, Zaia A, Liang B, Tribe DE (1999) Group II nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA polymerase gene sequences. J Invertebr Pathol 73:59–73. https://doi.org/10.1006/jipa.1998.4797

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Hou D, Wang Q, Kuang W, Zhang L, Li J, Shen S, Deng F, Wang H, Hu Z, Wang M (2018) Genome analysis of a novel Group I alphabaculovirus obtained from Oxyplax ochracea. PLoS ONE 13:e0192279. https://doi.org/10.1371/journal.pone.0192279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zanotto PM, Kessing BD, Maruniak JE (1993) Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J Invertebr Pathol 62:147–164. https://doi.org/10.1006/jipa.1993.1090

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert C, Chateigner A, Ernenwein L, Barbe V, Bézier A, Herniou EA, Cordaux R (2014) Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nat Commun 5:3348. https://doi.org/10.1038/ncomms4348

    Article  CAS  PubMed  Google Scholar 

  11. van Oers M, Vlak J (2007) Baculovirus genomics. Curr Drug Targets 8:1051–1068. https://doi.org/10.2174/138945007782151333

    Article  PubMed  Google Scholar 

  12. Wennmann JT, Keilwagen J, Jehle JA (2018) Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. J Gen Virol 99:1307–1320. https://doi.org/10.1099/jgv.0.001100

    Article  CAS  PubMed  Google Scholar 

  13. Duffy SP, Young AM, Morin B, Lucarotti CJ, Koop BF, Levin DB (2006) Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome. J Virol 80:6952–6963. https://doi.org/10.1128/JVI.00187-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Maruniak A, Maruniak JE, Zanotto PMA, Doumbouya AE, Liu J-C, Merritt TM, Lanoie JS (2004) Sequence analysis of the genome of the Neodiprion sertifer nucleopolyhedrovirus. J Virol 78:7036–7051. https://doi.org/10.1128/JVI.78.13.7036-7051.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lauzon HAM, Lucarotti CJ, Krell PJ, Feng Q, Retnakaran A, Arif BM (2004) Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. J Virol 78:7023–7035. https://doi.org/10.1128/JVI.78.13.7023-7035.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arif B, Escasa S, Pavlik L (2011) Biology and genomics of viruses within the genus Gammabaculovirus. Viruses 3:2214–2222. https://doi.org/10.3390/v3112214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wood DE, Lu J, Langmead B (2019) Improved metagenomic analysis with Kraken 2. Genome Biol 20:257. https://doi.org/10.1186/s13059-019-1891-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  22. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan SY, Kamimura RT, Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D, Weston DJ, Allen BH, Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia J-M, Chia J-M, Colasanti R, Conrad N, Davis JJ, Davison BH, DeJongh M, Devoid S, Dietrich E, Dubchak I, Edirisinghe JN, Fang G, Faria JP, Frybarger PM, Gerlach W, Gerstein M, Greiner A, Gurtowski J, Haun HL, He F, Jain R, Joachimiak MP, Keegan KP, Kondo S, Kumar V, Land ML, Meyer F, Mills M, Novichkov PS, Oh T, Olsen GJ, Olson R, Parrello B, Pasternak S, Pearson E, Poon SS, Price GA, Ramakrishnan S, Ranjan P, Ronald PC, Schatz MC, Seaver SMD, Shukla M, Sutormin RA, Syed MH, Thomason J, Tintle NL, Wang D, Xia F, Yoo H, Yoo S, Yu D (2018) KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36:566–569. https://doi.org/10.1038/nbt.4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641. https://doi.org/10.1093/nar/27.23.4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  25. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM (2021) BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 38:4647–4654. https://doi.org/10.1093/molbev/msab199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bateman A, Martin M-J, Orchard S, Magrane M, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bye-A-Jee H, Cukura A, Denny P, Dogan T, Ebenezer T, Fan J, Garmiri P, da Costa Gonzales LJ, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Joshi V, Jyothi D, Kandasaamy S, Lock A, Luciani A, Lugaric M, Luo J, Lussi Y, MacDougall A, Madeira F, Mahmoudy M, Mishra A, Moulang K, Nightingale A, Pundir S, Qi G, Raj S, Raposo P, Rice DL, Saidi R, Santos R, Speretta E, Stephenson J, Totoo P, Turner E, Tyagi N, Vasudev P, Warner K, Watkins X, Zaru R, Zellner H, Bridge AJ, Aimo L, Argoud-Puy G, Auchincloss AH, Axelsen KB, Bansal P, Baratin D, Batista Neto TM, Blatter M-C, Bolleman JT, Boutet E, Breuza L, Gil BC, Casals-Casas C, Echioukh KC, Coudert E, Cuche B, de Castro E, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gaudet P, Gehant S, Gerritsen V, Gos A, Gruaz N, Hulo C, Hyka-Nouspikel N, Jungo F, Kerhornou A, Le Mercier P, Lieberherr D, Masson P, Morgat A, Muthukrishnan V, Paesano S, Pedruzzi I, Pilbout S, Pourcel L, Poux S, Pozzato M, Pruess M, Redaschi N, Rivoire C, Sigrist CJA, Sonesson K, Sundaram S, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Huang H, Laiho K, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Q, Wang Y, Zhang J (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51:D523–D531. https://doi.org/10.1093/nar/gkac1052

    Article  CAS  Google Scholar 

  27. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. https://doi.org/10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  28. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A (2023) InterPro in 2022. Nucleic Acids Res 51:D418–D427. https://doi.org/10.1093/nar/gkac993

    Article  CAS  PubMed  Google Scholar 

  29. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu ZH, Arif BM, Jin F, Martens JWM, Chen XW, Sun JS, Zuidema D, Goldbach RW, Vlak JM (1998) Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J Gen Virol 79:2841–2851

    Article  CAS  PubMed  Google Scholar 

  32. Afonso CL, Tulman ER, Lu Z, Balinsky CA, Moser BA, Becnel JJ, Rock DL, Kutish GF (2001) Genome sequence of a baculovirus pathogenic for Culex nigripalpus. J Virol 75:11157–11165. https://doi.org/10.1128/JVI.75.22.11157-11165.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Article  PubMed  Google Scholar 

  35. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rambaut A (2014) FigTree v1.4.2, A graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 10 Mar 2023

  39. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  40. Goto C, Hayakawa T, Maeda S (1998) Genome organization of Xestia c-nigrum granulovirus. Virus Genes 16:199–210. https://doi.org/10.1023/a:1007972108026

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Liu X, Tang P, Zhang H, Qin Q, Zhang Z (2021) Genome sequence and organization of the Mythimna (formerly Pseudaletia) unipuncta granulovirus Hawaiian strain. Sci Rep 11:414. https://doi.org/10.1038/s41598-020-80117-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferrelli ML, Salvador R, Biedma ME, Berretta MF, Haase S, Sciocco-Cap A, Ghiringhelli PD, Romanowski V (2012) Genome of Epinotia aporema granulovirus (EpapGV), a polyorganotropic fast killing betabaculovirus with a novel thymidylate kinase gene. BMC Genomics 13:548. https://doi.org/10.1186/1471-2164-13-548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krejmer-Rabalska M, Rabalski L, Skrzecz I, Szewczyk B (2016) Complete genome sequence of Lymantria dispar multiple nucleopolyhedrovirus isolated in Southwestern Poland. Microbiol Resour Announc. https://doi.org/10.1128/genomeA.01422-16

    Article  Google Scholar 

  44. Ji X, Axford D, Owen R, Evans G, Ginn HM, Sutton G, Stuart DI (2015) Polyhedra structures and the evolution of the insect viruses. J Struct Biol 192:88–99. https://doi.org/10.1016/j.jsb.2015.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rohrmann GF (2019) Baculovirus molecular biology, 4th edn. National Center for Biotechnology Information (US), Bethesda

    Google Scholar 

  46. Wang M, Hu Z (2019) Advances in molecular biology of baculoviruses. Insect molecular virology: advances and emerging trends. Caister Academic Press, Poole

    Google Scholar 

  47. Jin J, Dong W, Guarino LA (1998) The LEF-4 subunit of baculovirus RNA polymerase has RNA 5′-triphosphatase and ATPase activities. J Virol 72:10011–10019. https://doi.org/10.1128/JVI.72.12.10011-10019.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu A, Miller LK (1995) The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J Virol 69:975–982. https://doi.org/10.1128/jvi.69.2.975-982.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu X, Guarino LA (2003) Autographa californica nucleopolyhedrovirus orf69 encodes an RNA cap (nucleoside-2′-O)-methyltransferase. J Virol 77:3430–3440. https://doi.org/10.1128/JVI.77.6.3430-3440.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lauzon HAM (2006) Genomic comparison of Neodiprion sertifer and Neodiprion lecontei nucleopolyhedroviruses and identification of potential hymenopteran baculovirus-specific open reading frames. J Gen Virol 87:1477–1489. https://doi.org/10.1099/vir.0.81727-0

    Article  CAS  PubMed  Google Scholar 

  51. Olson VA, Wetter JA, Friesen PD (2003) The highly conserved basic domain I of baculovirus IE1 is required for hr enhancer DNA binding and hr-dependent transactivation. J Virol 77:5668–5677. https://doi.org/10.1128/JVI.77.10.5668-5677.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang M, Tuladhar E, Shen S, Wang H, van Oers MM, Vlak JM, Westenberg M (2010) Specificity of baculovirus P6.9 basic DNA-binding proteins and critical role of the C terminus in virion formation. J Virol 84:8821–8828. https://doi.org/10.1128/JVI.00072-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ishimwe E, Hodgson JJ, Clem RJ, Passarelli AL (2015) Reaching the melting point: degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination. Virology 479–480:637–649. https://doi.org/10.1016/j.virol.2015.01.027

    Article  CAS  PubMed  Google Scholar 

  54. Slack JM, Lawrence SD, Krell PJ, Arif BM (2008) Trypsin cleavage of the baculovirus occlusion-derived virus attachment protein P74 is prerequisite in per os infection. J Gen Virol 89:2388–2397. https://doi.org/10.1099/vir.0.2008/002543-0

    Article  CAS  PubMed  Google Scholar 

  55. Imai N, Matsuda N, Tanaka K, Nakano A, Matsumoto S, Kang W (2003) Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. J Virol 77:923–930. https://doi.org/10.1128/jvi.77.2.923-930.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369. https://doi.org/10.1073/pnas.96.20.11364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6:287–297. https://doi.org/10.1038/nrm1621

    Article  CAS  PubMed  Google Scholar 

  58. Mérens A, Matrat S, Aubry A, Lascols C, Jarlier V, Soussy C-J, Cavallo J-D, Cambau E (2009) The pentapeptide repeat proteins MfpAMt and QnrB4 exhibit opposite effects on DNA gyrase catalytic reactions and on the ternary gyrase-DNA-quinolone complex. J Bacteriol 191:1587–1594. https://doi.org/10.1128/JB.01205-08

    Article  CAS  PubMed  Google Scholar 

  59. Jayachandran B, Hussain M, Asgari S (2012) RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J Virol 86:13729–13734. https://doi.org/10.1128/JVI.02041-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mehrabadi M, Hussain M, Matindoost L, Asgari S (2015) The baculovirus antiapoptotic p35 protein functions as an inhibitor of the host RNA interference antiviral response. J Virol 89:8182–8192. https://doi.org/10.1128/JVI.00802-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao S, Kong X, Wu X (2021) RNAi-based immunity in insects against baculoviruses and the strategies of baculoviruses involved in siRNA and miRNA pathways to weaken the defense. Dev Comp Immunol 122:104116. https://doi.org/10.1016/j.dci.2021.104116

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J-H, Ohkawa T, Washburn JO, Volkman LE (2005) Effects of Ac150 on virulence and pathogenesis of Autographa californica multiple nucleopolyhedrovirus in noctuid hosts. J Gen Virol 86:1619–1627. https://doi.org/10.1099/vir.0.80930-0

    Article  CAS  PubMed  Google Scholar 

  63. de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol Biosyst 8:1661–1677. https://doi.org/10.1039/c2mb05487f

    Article  CAS  PubMed  Google Scholar 

  64. Iyer LM, Burroughs AM, Anantharaman V, Aravind L (2022) Apprehending the NAD+-ADPr-dependent systems in the virus world. Viruses 14:1977. https://doi.org/10.3390/v14091977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lüscher B, Ahel I, Altmeyer M, Ashworth A, Bai P, Chang P, Cohen M, Corda D, Dantzer F, Daugherty MD, Dawson TM, Dawson VL, Deindl S, Fehr AR, Feijs KLH, Filippov DV, Gagné J-P, Grimaldi G, Guettler S, Hoch NC, Hottiger MO, Korn P, Kraus WL, Ladurner A, Lehtiö L, Leung AKL, Lord CJ, Mangerich A, Matic I, Matthews J, Moldovan G-L, Moss J, Natoli G, Nielsen ML, Niepel M, Nolte F, Pascal J, Paschal BM, Pawłowski K, Poirier GG, Smith S, Timinszky G, Wang Z-Q, Yélamos J, Yu X, Zaja R, Ziegler M (2022) ADP-ribosyltransferases, an update on function and nomenclature. FEBS J 289:7399–7410. https://doi.org/10.1111/febs.16142

    Article  CAS  PubMed  Google Scholar 

  66. Cochran MA, Faulkner P (1983) Location of homologous DNA sequences interspersed at five regions in the baculovirus AcMNPV genome. J Virol 45:961–970. https://doi.org/10.1128/JVI.45.3.961-970.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kogan PH, Blissard GW (1994) A baculovirus gp64 early promoter is activated by host transcription factor binding to CACGTG and GATA elements. J Virol 68:813–822. https://doi.org/10.1128/JVI.68.2.813-822.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krappa R, Behn-Krappa A, Jahnel F, Doerfler W, Knebel-Mörsdorf D (1992) Differential factor binding at the promoter of early baculovirus gene PE38 during viral infection: GATA motif is recognized by an insect protein. J Virol 66:3494–3503. https://doi.org/10.1128/jvi.66.6.3494-3503.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ben Tiba S, Laarif A, Wennmann JT, Bouslama T, Jehle JA (2022) Biological activity and genome composition of a Tunisian isolate of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV-Tun2). Egypt J Biol Pest Control 32:71. https://doi.org/10.1186/s41938-022-00568-w

    Article  Google Scholar 

  70. Craveiro SR, Melo FL, Ribeiro ZMA, Ribeiro BM, Báo SN, Inglis PW, Castro MEB (2013) Pseudoplusia includens single nucleopolyhedrovirus: genetic diversity, phylogeny and hypervariability of the pif-2 gene. J Invertebr Pathol 114:258–267. https://doi.org/10.1016/j.jip.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  71. Harrison RL, Rowley DL (2022) The complete genome sequence of an alphabaculovirus from the brown tussock moth, Olene mendosa Hübner, expands our knowledge of lymantriine baculovirus diversity and evolution. Virus Genes 58:227–237. https://doi.org/10.1007/s11262-022-01899-4

    Article  CAS  PubMed  Google Scholar 

  72. Ikeda M, Hamajima R, Kobayashi M (2015) Baculoviruses: diversity, evolution and manipulation of insects. Entomol Sci 18:1–20. https://doi.org/10.1111/ens.12105

    Article  Google Scholar 

  73. Thiem SM, Cheng X-W (2009) Baculovirus host-range. Virol Sin 24:436–457. https://doi.org/10.1007/s12250-009-3058-8

    Article  Google Scholar 

  74. Su J, Lung O, Blissard GW (2011) The Autographa californica multiple nucleopolyhedrovirus lef-5 gene is required for productive infection. Virology 416:54–64. https://doi.org/10.1016/j.virol.2011.04.019

    Article  CAS  PubMed  Google Scholar 

  75. Blissard GW, Theilmann DA (2018) Baculovirus entry and egress from insect cells. Annu Rev Virol 5:113–139. https://doi.org/10.1146/annurev-virology-092917-043356

    Article  CAS  PubMed  Google Scholar 

  76. Song J, Wang X, Hou D, Huang H, Liu X, Deng F, Wang H, Arif BM, Hu Z, Wang M (2016) The host specificities of baculovirus per os infectivity factors. PLoS ONE 11:e0159862. https://doi.org/10.1371/journal.pone.0159862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from the Department of Biology of the Ege University who provided the specimens. We are also grateful to Dr. Hasan H. BAŞIBÜYÜK (Department of Gerontology, Akdeniz University) and Dr. Merve Nur AYDEMİR for their contributions in data generation. We thank the anonymous reviewers for their careful reading of the manuscript and many constructive comments.

Funding

This study was funded by TÜBİTAK (The Scientific and Technological Research Council of Turkey, Grant Number 112T418).

Author information

Authors and Affiliations

Authors

Contributions

OD contributed to the generation and interpretation of data and edited the manuscript. MB performed the analyses and contributed to interpretation of data. MŞS contributed to the generation of data and edition of the manuscript. EMK involved in the conceptualization, supervision, final interpretation of data, and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ertan Mahir Korkmaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Research procedures in this study did not violate any relevant laws and regulations. No relevant ethics committee(s) or institution(s) were applicable for the materials used in this study.

Additional information

Edited by Sassan Asgari

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11262_2024_2050_MOESM1_ESM.pdf

Homologous repeats (hrs) of NeseNPV-TR. The late/very late promoter motif (A/G/T)TAAG and the potential GATA factor binding site are underlined with red and then boxed, respectively. Supplementary file1 (PDF 1514 KB)

11262_2024_2050_MOESM2_ESM.pdf

Phylogenetic tree of baculoviruses constructed under ML approach using the dataset of combination of the 38 core genes and polh/gran genes. Culex nigripalpus NPV (deltabaculovirus) used as outgroup. Only bootstrap values lower than 100 in ML were shown. Supplementary file2 (PDF 4753 KB)

11262_2024_2050_MOESM3_ESM.pdf

Phylogenetic tree of baculoviruses constructed under BI approach using the dataset of combination of the 38 core genes and polh/gran genes. Culex nigripalpus NPV (deltabaculovirus) used as outgroup. Only support values lower than 1.0 in BI were shown. Supplementary file3 (PDF 6250 KB)

Supplementary file4 (XLSX 56 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, Ö., Budak, M., Salman, M.Ş. et al. Comparative genomics of the Neodiprion sertifer nucleopolyhedrovirus from Turkey with the fewest ORFs among baculoviruses. Virus Genes 60, 194–207 (2024). https://doi.org/10.1007/s11262-024-02050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-024-02050-1

Keywords

Navigation