Skip to main content
Log in

The complete genome sequence of an alphabaculovirus from the brown tussock moth, Olene mendosa Hübner, expands our knowledge of lymantriine baculovirus diversity and evolution

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The complete genome sequence was determined for an apparent alphabaculovirus isolated from larval cadavers of the brown tussock moth, Olene mendosa Hübner, collected during an epizootic in Coimbatore, India. The genome was determined to be a circular 142,291 bp molecule, and 147 ORFs and nine homologous regions were annotated for the sequence. Analysis of the sequence confirmed that this virus, Olene mendosa nucleopolyhedrovirus (OlmeNPV), was a member of genus Alphabaculovirus in family Baculoviridae. Phylogenies inferred from nucleotide and amino acid alignments indicated that OlmeNPV was part of a group of viruses that infect moths of genus Lymantria, suggesting that OlmeNPV may have shifted hosts from a Lymantria species to an ancestral Olene species at some point during its evolutionary history. OlmeNPV was most closely related to Lymantria xylina multiple nucleopolyhedrovirus isolate 5 (LyxyMNPV-5). The genomes of OlmeNPV and LyxyMNPV-5 were distinguished not only by differences in ORF content, but by a 27 kbp region of the genome that is inverted in LyxyMNPV-5 relative to OlmeNPV. Pairwise nucleotide distances between OlmeNPV and other Lymantria spp. alphabaculoviruses indicate that OlmeNPV represents a new baculovirus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harrison RL, Herniou EA, Jehle JA, Theilmann DA, Burand JP, Becnel JJ, Krell PJ, van Oers MM, Mowery JD, Bauchan GR (2018) ICTV virus taxonomy profile: Baculoviridae. J Gen Virol 99:1185–1186. https://doi.org/10.1099/jgv.0.001107

    Article  CAS  PubMed  Google Scholar 

  2. Rohrmann GF (2019) Baculovirus molecular biology [Internet]. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  3. Goulson D (1997) Wipfelkrankheit: modification of host behaviour during baculoviral infection. Oecologia 109:219–228. https://doi.org/10.1007/s004420050076

    Article  CAS  PubMed  Google Scholar 

  4. Hoover K, Grove M, Gardner M, Hughes DP, McNeil J, Slavicek J (2011) A gene for an extended phenotype. Science 333:1401. https://doi.org/10.1126/science.1209199

    Article  CAS  PubMed  Google Scholar 

  5. Han Y, van Houte S, van Oers MM, Ros VID (2018) Timely trigger of caterpillar zombie behaviour: temporal requirements for light in baculovirus-induced tree-top disease. Parasitology 145:822–827. https://doi.org/10.1017/S0031182017001822

    Article  PubMed  Google Scholar 

  6. Rabindra RJ, Subramaniam TR (1974) A nuclear polyhedrosis of Dasychira mendosa Hb. (Lepidoptera: Lymantriidae). Curr Sci 43:721–722

    Google Scholar 

  7. Zahiri R, Holloway JD, Kitching IJ, Lafontaine JD, Mutanen M, Wahlberg N (2012) Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst Entomol 37(1):102–124

    Article  Google Scholar 

  8. Wang HS, Wahlberg N, Holloway JD, Bergsten J, Fan XL, Janzen DH, Hallwachs W, Wen LJ, Wang M, Nylin S (2015) Molecular phylogeny of Lymantriinae (Lepidoptera, Noctuoidea, Erebidae) inferred from eight gene regions. Cladistics 31(6):579–592

    Article  CAS  PubMed  Google Scholar 

  9. Ahrens CH, Russell RL, Funk CJ, Evans JT, Harwood SH, Rohrmann GF (1997) The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 229:381–399

    Article  CAS  PubMed  Google Scholar 

  10. Thumbi DK, Eveleigh RJ, Lucarotti CJ, Lapointe R, Graham RI, Pavlik L, Lauzon HA, Arif BM (2011) Complete sequence, analysis and organization of the Orgyia leucostigma nucleopolyhedrovirus genome. Viruses 3:2301–2327. https://doi.org/10.3390/v3112301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang XD, Xiao Q, Ma XC, Zhu ZR, Zhang CX (2009) Morphology and genome of Euproctis pseudoconspersa nucleopolyhedrovirus. Virus Genes 38:495–506. https://doi.org/10.1007/s11262-009-0355-0

    Article  CAS  PubMed  Google Scholar 

  12. Krejmer M, Skrzecz I, Wasag B, Szewczyk B, Rabalski L (2015) The genome of Dasychira pudibunda nucleopolyhedrovirus (DapuNPV) reveals novel genetic connection between baculoviruses infecting moths of the Lymantriidae family. BMC Genomics 16:759. https://doi.org/10.1186/s12864-015-1963-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li J, Duan X, Wang Q, Zhang L, Deng F, Wang H, Hu Z, Wang M, Wang J (2019) Genome analysis of a novel clade II. B Alphabaculovirus obtained from Artaxa digramma. Viruses. https://doi.org/10.3390/v11100925

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kuzio J, Pearson MN, Harwood SH, Funk CJ, Evans JT, Slavicek JM, Rohrmann GF (1999) Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. Virology 253:17–34

    Article  CAS  PubMed  Google Scholar 

  15. Rabalski L, Krejmer-Rabalska M, Skrzecz I, Wasag B, Szewczyk B (2016) An alphabaculovirus isolated from dead Lymantria dispar larvae shows high genetic similarity to baculovirus previously isolated from Lymantria monacha—an example of adaptation to a new host. J Invertebr Pathol 139:56–66. https://doi.org/10.1016/j.jip.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  16. Nai YS, Wang TC, Chen YR, Lo CF, Wang CH (2009) A new nucleopolyhedrovirus strain (LdMNPV-like virus) with a defective fp25 gene from Lymantria xylina (Lepidoptera: Lymantriidae) in Taiwan. J Invertebr Pathol 102:110–119. https://doi.org/10.1016/j.jip.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Nai YS, Wu CY, Wang TC, Chen YR, Lau WH, Lo CF, Tsai MF, Wang CH (2010) Genomic sequencing and analyses of Lymantria xylina multiple nucleopolyhedrovirus. BMC Genomics 11:116. https://doi.org/10.1186/1471-2164-11-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takatsuka J (2016) Lymantria mathura nucleopolyhedrovirus: identification, occurrence and genetic diversity in Iwate Prefecture, Japan. J Invertebr Pathol 138:1–9. https://doi.org/10.1016/j.jip.2016.05.006

    Article  PubMed  Google Scholar 

  19. Jehle JA, Lange M, Wang H, Hu Z, Wang Y, Hauschild R (2006) Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346:180–193. https://doi.org/10.1016/j.virol.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  20. Harrison RL, Keena MA, Rowley DL (2014) Classification, genetic variation and pathogenicity of Lymantria dispar nucleopolyhedrovirus isolates from Asia, Europe, and North America. J Invertebr Pathol 116:27–35. https://doi.org/10.1016/j.jip.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  21. Gani M, Gupta RK, Zargar SM, Kour G, Monobrullah M, Kandasamy T, Mohanasundaram A (2017) Molecular identification and phylogenetic analyses of multiple nucleopolyhedrovirus isolated from Lymantria obfuscata (Lepidoptera: Lymantriidae) in India. Appl Entomol Zool 52(3):389–399

    Article  CAS  Google Scholar 

  22. Harrison RL, Mowery JD, Rowley DL, Bauchan GR, Theilmann DA, Rohrmann GF, Erlandson MA (2018) The complete genome sequence of a third distinct baculovirus isolated from the true armyworm, Mythimna unipuncta, contains two copies of the lef-7 gene. Virus Genes 54:297–310. https://doi.org/10.1007/s11262-017-1525-0

    Article  CAS  PubMed  Google Scholar 

  23. Harrison RL, Rowley DL (2019) Complete genome sequence of an alphabaculovirus from the southern armyworm, Spodoptera eridania. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01277-18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rowley DL, Farrar RR Jr, Blackburn MB, Harrison RL (2010) Genetic and biological variation among nucleopolyhedrovirus isolates from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Virus Genes 40:458–468. https://doi.org/10.1007/s11262-010-0462-y

    Article  CAS  PubMed  Google Scholar 

  25. Zhang KY, Gao YZ, Du MZ, Liu S, Dong C, Guo FB (2019) Vgas: a viral genome annotation system. Front Microbiol 10:184. https://doi.org/10.3389/fmicb.2019.00184

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430:2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  27. Darling AE, Mau B, Perna NT (2010) Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147. https://doi.org/10.1371/journal.pone.0011147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  30. Silvestro D, Michalak I (2012) RaxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  31. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320. https://doi.org/10.1093/molbev/msn067

    Article  CAS  PubMed  Google Scholar 

  32. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699. https://doi.org/10.1093/oxfordjournals.molbev.a003851

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9:678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

    Article  CAS  PubMed  Google Scholar 

  35. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  36. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. https://doi.org/10.1093/bioinformatics/8.3.275

    Article  CAS  PubMed  Google Scholar 

  37. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  38. Garavaglia MJ, Miele SA, Iserte JA, Belaich MN, Ghiringhelli PD (2012) The ac53, ac78, ac101, and ac103 genes are newly discovered core genes in the family Baculoviridae. J Virol 86:12069–12079. https://doi.org/10.1128/JVI.01873-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Javed MA, Biswas S, Willis LG, Harris S, Pritchard C, van Oers MM, Donly BC, Erlandson MA, Hegedus DD, Theilmann DA (2017) Autographa californica multiple nucleopolyhedrovirus AC83 is a per os infectivity factor (PIF) protein required for occlusion-derived virus (ODV) and budded virus nucleocapsid assembly as well as assembly of the PIF complex in ODV envelopes. J Virol 91:e02115-02116. https://doi.org/10.1128/JVI.02115-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braunagel SC, He H, Ramamurthy P, Summers MD (1996) Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222:100–114

    Article  CAS  PubMed  Google Scholar 

  41. Eldridge R, Li Y, Miller LK (1992) Characterization of a baculovirus gene encoding a small conotoxinlike polypeptide. J Virol 66:6563–6571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thiem SM, Du X, Quentin ME, Berner MM (1996) Identification of baculovirus gene that promotes Autographa californica nuclear polyhedrosis virus replication in a nonpermissive insect cell line. J Virol 70:2221–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu J, Tang Z, Cai Y, Wu W, Yuan M, Yang K (2019) The Autographa californica multiple nucleopolyhedrovirus ac51 gene is required for efficient nuclear egress of nucleocapsids and is essential for in vivo virulence. J Virol. https://doi.org/10.1128/JVI.01923-18

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bideshi DK, Renault S, Stasiak K, Federici BA, Bigot Y (2003) Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J Gen Virol 84:2531–2544

    Article  CAS  PubMed  Google Scholar 

  45. Hyink O, Dellow RA, Olsen MJ, Caradoc-Davies KM, Drake K, Herniou EA, Cory JS, O’Reilly DR, Ward VK (2002) Whole genome analysis of the Epiphyas postvittana nucleopolyhedrovirus. J Gen Virol 83:957–971

    Article  CAS  PubMed  Google Scholar 

  46. Rohrmann GF, Erlandson MA, Theilmann DA (2014) Genome sequence of an alphabaculovirus isolated from Choristoneura murinana. Genome Announc. https://doi.org/10.1128/genomeA.01135-13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abd-Alla AM, Cousserans F, Parker AG, Jehle JA, Parker NJ, Vlak JM, Robinson AS, Bergoin M (2008) Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus reveals a novel, large, double-stranded circular DNA virus. J Virol 82:4595–4611. https://doi.org/10.1128/JVI.02588-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abd-Alla AMM, Kariithi HM, Cousserans F, Parker NJ, Ince IA, Scully ED, Boeren S, Geib SM, Mekonnen S, Vlak JM, Parker AG, Vreysen MJB, Bergoin M (2016) Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach. J Gen Virol 97:1010–1031. https://doi.org/10.1099/jgv.0.000409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zanotto PM, Kessing BD, Maruniak JE (1993) Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J Invertebr Pathol 62:147–164

    Article  CAS  PubMed  Google Scholar 

  50. Gencer D, Bayramoglu Z, Nalcacioglu R, Kleespies RG, Demirbag Z, Demir I (2018) Characterisation of three alphabaculovirus isolates from the gypsy moth, Lymantria dispar dispar (Lepidoptera: Erebidae). Turkey Biocontrol Sci Technol 28(2):107–121

    Article  Google Scholar 

  51. Wennmann JT, Keilwagen J, Jehle JA (2018) Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. J Gen Virol 99:1307–1320. https://doi.org/10.1099/jgv.0.001100

    Article  CAS  PubMed  Google Scholar 

  52. Theze J, Lopez-Vaamonde C, Cory JS, Herniou EA (2018) Biodiversity, evolution and ecological specialization of baculoviruses: a treasure trove for future applied research. Viruses. https://doi.org/10.3390/v10070366

    Article  PubMed  PubMed Central  Google Scholar 

  53. Means JC, Muro I, Clem RJ (2003) Silencing of the baculovirus Op-iap3 gene by RNA interference reveals that it is required for prevention of apoptosis during Orgyia pseudotsugata M nucleopolyhedrovirus infection of Ld652Y cells. J Virol 77:4481–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen CJ, Quentin ME, Brennan LA, Kukel C, Thiem SM (1998) Lymantria dispar nucleopolyhedrovirus hrf-1 expands the larval host range of Autographa californica nucleopolyhedrovirus. J Virol 72:2526–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishikawa H, Ikeda M, Alves CA, Thiem SM, Kobayashi M (2004) Host range factor 1 from Lymantria dispar nucleopolyhedrovirus (NPV) is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L. dispar. J Virol 78:12703–12708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: RLH, DLR. Performed the experiments: DLR. Analyzed the data: DLR, RLH. Wrote the paper: RLH, DLR.

Corresponding author

Correspondence to Robert L. Harrison.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article.

Ethical approval

The research described in this paper did not use any human or animal subjects.

Additional information

Edited by A. Lorena Passarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, R.L., Rowley, D.L. The complete genome sequence of an alphabaculovirus from the brown tussock moth, Olene mendosa Hübner, expands our knowledge of lymantriine baculovirus diversity and evolution. Virus Genes 58, 227–237 (2022). https://doi.org/10.1007/s11262-022-01899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01899-4

Keywords

Navigation