Skip to main content
Log in

Genomic and phylogenetic analysis of Argentinian Equid Herpesvirus 1 strains

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Equid Herpesvirus 1 (EHV-1) has long been causally implicated in the occurrence of abortion, neonatal death, respiratory disease, and neurological disorders in horses. This study analyzed for the first time the characteristics of the genomic section of Argentinian EHV-1 strains and reconstructed the phylogeny in order to establish their origin. The phylogenetic dataset included 22 Argentinian strains and four additional reference strains isolated in other countries. The intergenic region between ORF 62 and ORF 63 was amplified by PCR and sequenced. The phylogenetic analysis carried out by parsimony algorithms showed that six of the Argentinian strains had the same origin as British and Japanese strains. The mapping of symptoms caused by EHV-1 suggested that neonatal disease developed through convergent evolution, which would constitute an adaptation mechanism of the virus. This study constitutes the first analysis carried out in South-American strains that establishes the phylogenetic relationship between Argentinian strains and rebuilds the evolutionary history of symptoms. This study focuses on a very important aspect of evolution of Herpesviridae infecting perissodactyls and attempts to shed light on the evolution of symptoms, an issue of high clinical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. G.P. Allen, J.T. Bryans, Prog. Vet. Microbiol. Immunol. 2, 78–144 (1986)

    CAS  PubMed  Google Scholar 

  2. M.A. Arnedo, Bol. Soc. Entomologica Aragonesa 26, 57–84 (1999)

    Google Scholar 

  3. C.M. Galosi, J. Norimine, M.G. Echeverrìa, G.A. Oliva, E.O. Nosetto, M.E. Etcheverrigaray, Y. Tohya, T. Mikami, Braz. J. Med. Biol. Res. 31(6), 771–774 (1998). doi:https://doi.org/10.1590/S0100-879X1998000600007

    Article  CAS  PubMed  Google Scholar 

  4. P.A. Goloboff, Sociedad Argentina de Botánica (1998)

  5. P. Goloboff, K. Nixon, J. Farris, TNT: Tree analysis using new technology (Published by the authors: Tucumàn, Argentina, 2003)

    Google Scholar 

  6. E.S. Ibrahim, O. Pagmajav, T. Yamaguchi, T. Matsumura, H. Fukushi, Microbiol. Immunol. 48(11), 831–842 (2004)

    Article  CAS  Google Scholar 

  7. E.S. Ibrahim, M. Kinoh, T. Matsumura, M. Kennedy, G.P. Allen, T. Yamaguchi, H. Fukushi, Arch. Virol. 152(2), 245–255 (2007). doi:https://doi.org/10.1007/s00705-006-0855-3

    Article  CAS  PubMed  Google Scholar 

  8. L.R. Jones, M.M. Cigliano, R.O. Zandomeni, E.L. Weber, Cladistics 20, 443–453 (2004). doi:https://doi.org/10.1111/j.1096-0031.2004.00030.x

    Article  PubMed  Google Scholar 

  9. J.P. Martínez, G.P. Martín Ocampos, L.C. Fernández, N.A. Fuentealba, V. Cid de la Paz, M. Barrandeguy, C.M. Galosi, Rev. Sci. Tech. Off. Int. Epiz. 25(3), 1075–1079 (2006)

    Article  Google Scholar 

  10. P. Norberg, E. Bergstrom, E. Rekabdar, M. Lindh, J.A. Liljeqvist, J. Virol. 78(19), 1075–1079 (2004). doi:https://doi.org/10.1128/JVI.78.19.10755-10764.2004

    Article  Google Scholar 

  11. K.C. Nixon, Winclada, Ver. 1.00.08 (Published by the author: Ithaca, NY, 2002)

    Google Scholar 

  12. J. Nugent, I. Birch-Machin, K.C. Smith, J.A. Mumford, Z. Swann, J.R. Newton, R.J. Bowden, G.P. Allen, N. Davis-Poynter, J. Virol. 80(8), 4047–4060 (2006). doi:https://doi.org/10.1128/JVI.80.8.4047-4060.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. J.R. Patel, J. Heldens, Vet. J. 170(1), 6–7 (2005). doi:https://doi.org/10.1016/j.tvjl.2004.04.018

    Article  Google Scholar 

  14. D. Pride, Distributed by the author (2000)

  15. L.L. Rodriguez, W.M. Fitch, S.R. Nichol, Proc. Natl. Acad. Sci. USA 93, 13030–13035 (1996). doi:https://doi.org/10.1073/pnas.93.23.13030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. C. Scholtissek, S. Ludwig, W.M. Fitch, Arch. Virol. 131, 237–250 (1993). doi:https://doi.org/10.1007/BF01378629

    Article  CAS  PubMed  Google Scholar 

  17. D.J. Smith, A.S. Hamblin, N. Edington, Equine Vet. J. 33(2), 138–142 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. J. von Eimen, J. Wellington, J.M. Whalley, K. Osterrieder, D.J. O’Callaghan, N.J. Osterrieder, Virology 78(6), 3003–3013 (2004). doi:https://doi.org/10.1128/JVI.78.6.3003-3013.2004

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dra María Barrandeguy for providing several strains, Msc. Norma Gonzalez for the critical reading of manuscript, and Prof A. Torres, Prof N. Lubo, and Prof. S. Markulin for the help provided. This research was partially supported by a grant from the Argentine Association of Equine Veterinary and by the Scientific Research Commission (CIC), Buenos Aires Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Martín Ocampos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín Ocampos, G.P., Fuentealba, N.A., Sguazza, G.H. et al. Genomic and phylogenetic analysis of Argentinian Equid Herpesvirus 1 strains. Virus Genes 38, 113–117 (2009). https://doi.org/10.1007/s11262-008-0301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-008-0301-6

Keywords

Navigation