Skip to main content
Log in

Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs

  • Original article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

An experiment of 150 days was conducted on 42 male Nellore lambs (28.3 ± 0.64 kg) to determine the effect of zinc (Zn) supplementation (0,15, 30 and 45 ppm) in diet from inorganic (ZnSO4) and organic (Zn proteinate) sources on immune response and antioxidant enzyme activities by allotting them randomly to 7 groups in completely randomized design. The basal diet (BD) contained 29.28 ppm Zn. The humoral immune response assessed at 75 d against B. abortus was higher (P<0.01) with 15 or 30 ppm Zn supplementation from organic source. The dose and source had no effect on titres against chicken RBC antigen. The cell mediated immune response assessed as delayed type hypersensitivity (DTH) response against phytohaemagglutinin-P and in vitro lymphocyte proliferative response against concanavalin A at 150 d was higher (P<0.05) at 15 ppm Zn supplementation compared to BD fed lambs. Supplementation of 45 ppm Zn had no positive effect on immune response. The DTH response and antibody titres against B.abortus were higher (P< 0.05) on Zn proteinate compared to ZnSO4 at 15 ppm Zn supplementation. The lipid peroxidase activity was lower (P < 0.01), while the RBC superoxide dismutase and catalase activities were higher (P < 0.01) in lambs at 15 ppm Zn supplementation compared to BD diet fed lambs, assessed at 75 d of feeding. Serum globulin concentration and alkaline phosphatase (ALP) activity (75 d of experiment) was higher in Zn supplemented lambs. The ALP activity increased (P < 0.01) with increase in Zn supplementation and being higher when supplementation was from Zn proteinate compared to ZnSO4. The study indicated that 15 ppm zinc supplementation was required for obtaining higher immune response in lambs when fed a basal diet containing 29.28 ppm Zn and supplementation as Zn proteinate had higher antioxidant enzyme activities and immune response compared to ZnSO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alton GG, Jones LM, Pietz DE 1975 Laboratory techniques in brucellosis, 2nd edn. WHO, Geneva, WHO Monograph Series, 55

    Google Scholar 

  • Bergmeyer HU (1974) Alkaline phosphastase. In: Methods of enzymatic analysis. Vol. II. Academic Press, Inc; USA.

  • Bergmeyer HU (1983). Catalase. In: Methods of enzymatic analysis, Vol 2, pp. 165–166 (Weinheim, Verlag Chemie)

  • Bounous DL, Raymond P, Campognoli RP, Brown J 1992. Comparison of MTT colorimetric assay and tritiated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes. Avian Diseases 36: 1022–1027. doi:10.2307/1591566

    Article  PubMed  CAS  Google Scholar 

  • Bray TM, Bettger, WJ (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med., 281–191. doi:10.1016/0891-5849(90)90076-U

  • Cannan RK (1958) Clinical chemistry 4: 246–251 C F Text book of clinical practical Biochemistry, Varley, H 1991 Vol I, 5th edn, (CBS publisher and Distributors, pp 479–480).

  • Chesters JK 1997 Zinc. In: Handbook of Nutritionally Essential Mineral Elements, pp. 185–230 [BL O’Dell and RA Sunde, editors]. New York: Marcel Dekker Inc.

    Google Scholar 

  • Chvapil M, Elias SL, Ryan JN, Zukoski CF (1972) Pathophysiology of zinc. In: International review of neurobiology. Supplement 1st ed. New York: Academy Press, 1972: 105–124.

  • Coleman JE 1992. Zinc proteins enzymes, storage proteins, transcription factors and replication proteins. Annu. Rev. Biochem. 16: 897–946. doi:10.1146/annurev.bi.61.070192.004341

    Article  Google Scholar 

  • Droke EA, Spears JW 1993. In vitro and in vivo immunological measurements in growing lambs fed diets deficient, marginal or adequate in zinc. J. Nutr. Immunol. 2: 71–90. doi:10.1300/J053v02n01_08

    Article  CAS  Google Scholar 

  • Droke EA, Gengelbach GP, Spears JW 1998 Influence of level and source (inorganic vs organic) of zinc supplementation on immune function in growing lambs. Asian-Australasian J. Anim. Sci. 11: 139–149.

    CAS  Google Scholar 

  • Duncan DB 1955. Multiple ‘F’ test. Biometrics 1: 142.

    Google Scholar 

  • Engle TE, Nockels CF, Kimberling CV, Weaber DL, Johnson AB 1997 Zinc repletion with organic or inorganic forms of zinc and protein turnover in marginally zinc deficient calves. J. Anim. Sci. 75: 3074–3081

    PubMed  CAS  Google Scholar 

  • Galyean ML, Malcolm-Callis KJ, Gunter SA, Berrie RA 1995 Effects of zinc source and level and added copper lysine in the receiving diet on performance by growing and finishing steers. Prof. Anim. Sci. 11: 139–148.

    Google Scholar 

  • Goswami TK, Bhar R, Jadhav SE, Joardar, SN, Ram GC 2005 Role of dietary zinc as a nutritional immunomodulator. Asian-Australasian Journal of Animal Sciences, 183: 439–452.

    CAS  Google Scholar 

  • Hatfield PG, Robinson BL, Minikheim DL, Kott, RM, Roth, NI, Daniels, JT, Swenson, CK 2002 J. Anim. Sci. 80: 1329–1334

    PubMed  CAS  Google Scholar 

  • Hiller, Mc Intosh, Van Slyke 1927 Calorimetric determination of proteins. J. Clin. Inves. 4: 235–242. doi:10.1172/JCI100121

    Article  CAS  Google Scholar 

  • ICAR 1998 Nutrient requirement of Livestock and Poultry. (Indian Council of Agricultural Research, New Delhi pp6)

    Google Scholar 

  • Keen CL, Gershwin ME 1990 Zinc deficiency and immune function. Annu. Rev. Nutr. 10: 415–431. doi:10.1146/annurev.nu.10.070190.002215

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RL, Chew BP, Cronrath JD 1997 Zinc oxide and amino acids as sources of dietary zinc for calves: Effect on untake and immunity. J. Dairy Sci. 80: 1381–1388

    PubMed  CAS  Google Scholar 

  • Kraus A, Roth H, Krichgessner M 1997 Supplementation with vitamin C, vitamin E, or beta carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats. J. Nutr. 127: 1290–1296

    PubMed  CAS  Google Scholar 

  • Kroncke KD, Fehsel K, Schmidt T 1994 Nitric oxide destroys zinc sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun. 200: 1105–1110. doi:10.1006/bbrc.1994.1564

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough JJ, Farr AL and Randall RJ. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265–275

    PubMed  CAS  Google Scholar 

  • Mates JM, Sanchez-Jimenez F 1999 Antioxidants enzymes and their implications in pathophysiologic processes. Frontiers in Bioscience, 4: D339–D345. doi:10.2741/Mates

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I 1969 Superoxide dismutase an enzymic function for erythrocuprein (Hemocuprein). Journal of Biological chemistry, 244: 6049–6055

    PubMed  CAS  Google Scholar 

  • Miller JK, Brzezinska-Slebodzinska E, Madsen FC 1993 Oxidative stress, antioxidants and animal function. J. Dairy Sci., 76: 2812–2823

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TJ 1983 Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65: 55–63. doi:10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  • Niki E (1996) alpha tocopherol. In: Handbook of antioxidants, Edited by Cadenas E and Packer L, Marcel Dekker, New York-London, pp. 3–25.

    Google Scholar 

  • NRC. 1985 Nutrient requirements of sheep. 6th Ed. National Research Council. National Academy Press. Washington DC.

    Google Scholar 

  • Nunnery GA, Vasconcelos JT, Parsons CH, Salyer GB, Defoor PJ, Valdez FR, Galyean, ML 2007 Effect of source of supplemental zinc on performance and humoral immunity in beef heifers. J. Anim Sci. 85: 2304–2313. doi:10.2527/jas.2007-0167

    Article  PubMed  CAS  Google Scholar 

  • Perlman P, Engvall E 1971 Enzyme linked immunosorbent assay (ELISA) quantitative assay for immunoglobulin. Immuno Chemistry, 8: 871–878. doi:10.1016/0019-2791(71)90454-X

    Article  Google Scholar 

  • Placer ZA, Cushman LL, Johnson B 1966 Estimation of product of lipid peroxidation (malonyl dialdehyde). Analytical Biochemistry 16: 359–364. doi:10.1016/0003-2697(66)90167-9

    Article  PubMed  CAS  Google Scholar 

  • Quist CF, Howerth EW, Bounous DI, Stallknecht DE 1997 Cell mediated immune response and IL-2 production in white triated deer experimentally infected with haemorrhage disease viruses. Veterinary Immunology and Immunopathology 56: 283–297. doi:10.1016/S0165-2427(96)05747-9

    Article  PubMed  CAS  Google Scholar 

  • Salyer GB, Galyean ML, Defoor PJ, Nunnery GA, Parsons CH, Rivera, JD 2004 Effects of copper and zinc source on performance and humoral immune response of newly received, lightweight beef heifers. J. Anim. Science 82: 2467–2473

    CAS  Google Scholar 

  • Saygili E I, Konukoglu D, Papila S, Aksay T 2003 Levels of plasma vitamin E, vitamin C, TBARS and cholesterol in male patients with colorectal tumors. Biochemistry (Moscow), 68: No 3, 317. doi:10.1023/A:1023010418230

    Article  Google Scholar 

  • Spears JW, Harvey RW, Brown TT 1991 Effects of zinc methionine and zinc oxide on performance, blood characteristics, and antibody titre response to viral vaccination in stressed feeder calves. J. Am. Vet. Med. Assoc. 199: 1731–1733

    PubMed  CAS  Google Scholar 

  • Spears JW 2000 Micronutrients and immune function in cattle. Proceedings of the Nutrition Society 59: 587–594

    PubMed  CAS  Google Scholar 

  • Spears JW, Kegley EB 2002 Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics and immune response of growing and finishing steers. J. Anim. Sci. 80: 2747–2752

    PubMed  CAS  Google Scholar 

  • Surai PF 1999 Vitamin E in avian reproduction. Poultry and Avian Biology Review 10: 1–60.

    Google Scholar 

  • Surai PF (2006) Anitoxidants systems in animal body. In: Selenium in nutrition and health. Nottingham University Press.

  • Wan DY, Cerklewski FL, Leklem JE 1993 Increase in plasma pyridoxal-5’ phosphate when alkaline phosphatase activity is reduced in moderately zinc-deficient rats. Biol. Trace. Elem. Res. 39: 203–210. doi:10.1007/BF02783190

    Article  PubMed  CAS  Google Scholar 

  • Wegmann TG, Smithies O 1966 A simple hemagglutination system requiring small amounts of red cells and antibodies transfusion, Philadelphia, 6: 67–73.

    Google Scholar 

  • Wu DO, Meydani SN (1998) Antioxidants and immune function. In: Antioxidant Status, Diet, Nutrition and Health, Edited by Papas AM, CRC Press, Boca Raton. Pp.371–400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nagalakshmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagalakshmi, D., Dhanalakshmi, K. & Himabindu, D. Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs. Vet Res Commun 33, 631–644 (2009). https://doi.org/10.1007/s11259-009-9212-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-009-9212-9

Keywords

Navigation