Skip to main content

Advertisement

Log in

Modeling the 20th-century distribution changes of Microgyne trifurcata, a rare plant of the southern South American grasslands

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Microgyne trifurcata is a rare native plant species from one of the areas with the highest human impact on the environment in southern South America. Its habitat, mostly grasslands suitable for agriculture, has been increasingly covered by crops since the late 1800s. Microgyne trifurcata provides an excellent case study to understand how different environmental variables have affected the distribution area of a rare species. This study aims to estimate the impact of topoclimatic and land-use changes in the distribution of Microgyne trifurcata throughout the twentieth century. We carried out recent past and present distribution modeling using the Ensembles of Small Models (ESM) methodology. In this spatio-temporal study, we included climatic, topographic, and land-use variables. We classified the occurrences into two periods of the twentieth century. The first dates from 1901 to 1940, and the second, from 1960 to 2000, when the main cropping changes of the area occurred. The projected area between 1960 and 2000 provides for this species new suitable habitats toward the northeast of the area of study. Our results highlight the importance of assessing the combined impacts of climate and land-use changes on species distributions over time. This study shows that the potential area of Microgyne trifurcata decreased and underwent fragmentation throughout the twentieth century when these variables combined are used to model its distribution. Our outcomes prompt future studies on the vulnerability of Microgyne trifurcata to outline conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abba AM, Zufiaurre E, Codesido M, Bilenca DN (2015) Burrowing activity by armadillos in agroecosystems of central Argentina: Biogeography, land use, and rainfall effects. Agric Ecosyst Environ 200:54–61. https://doi.org/10.1016/j.agee.2014.11.001

    Article  Google Scholar 

  • Achkar M, Blum A, Bartesaghi L, Ceroni M (2012) Escenarios de cambio de uso del suelo en Uruguay. Informe Técnico. Convenio MGAP/PPR – Facultad de Ciencias/Vida Silvestre/Sociedad Zoológica del Uruguay/CIEDUR

  • Agnolin FL, Lucero SO (2014) Sobre la presencia de Ctenomys talarum (Rodentia, Ctenomyidae) en el noreste de la provincia de Buenos Aires, Argentina. Historia Natural, Tercera Serie 3:77–85

    Google Scholar 

  • Aitken M, Roberts DW, Shultz LM (2007) Modelling distributions of rare plants in the great basin, Western North America. West N Am Nat 67:26–38. https://doi.org/10.3398/1527-0904(2007)67[26:MDORPI]2.0.CO;2

    Article  Google Scholar 

  • Andrade BO, Koch C, Boldrini II, Vélez-Martin E, Hasenack H, Herman J, Kollmann J, Pillar VD, Overbeck GE (2015) Grassland Degradation and Restoration: a Conceptual Framework of Stages and Thresholds Illustrated by Southern Brazilian Grasslands. Natureza & Conserva ç Ão 13:95–104

    Article  Google Scholar 

  • Andrade BO, Marchesi E, Burkarts S, Setubal RB, Lezama F, Perelman S, Schneider AA, Trevisan R, Overbeck GE, Boldrini II (2018) Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot J Linn Soc 188:250–256

    Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. https://doi.org/10.1016/j.tree.2006.09.010

    Article  PubMed  Google Scholar 

  • Araújo MB, Anderson RP, Márcia Barbosa A, Beale CM, Dormann CF, Early R, Garcia RA et al. (2019) Standards for distribution models in biodiversity assessments. Sci Adv 5:eaat4858.

  • Baldi G, Paruelo JM (2008) Land-use and land cover dynamics in South American temperate grasslands. Ecol Soc 13:6

    Article  Google Scholar 

  • Baldi G, Guerschman JP, Paruelo JM (2006) Characterizing fragmentation in temperate South America grasslands. Agr Ecosyst Environ 116:197–208

    Article  Google Scholar 

  • Baldi G, Texeira M, Martin OA, Grau HR, Jobbágy EG (2017) Opportunities drive the global distribution of protected areas. PeerJ 5:e2989.

  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip Rev Clim Change 6:151–169. https://doi.org/10.1002/wcc.316

    Article  Google Scholar 

  • Beaugrand G, Edwards M, Raybaud V, Goberville E, Kirby RR (2015) Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat Clim Change 5:695–701. https://doi.org/10.1038/nclimate2650

    Article  Google Scholar 

  • Berbery EH, Doyle M, Barros V (2006) Tendencias regionales en la precipitación. In: Barros V, Clarke R, Silva Días P (eds) El cambio climático en la Cuenca del Plata. CONICET, Buenos Aires, pp 67–79

    Google Scholar 

  • Bilenca D, Miñarro F (2004) Identificación de Áreas Valiosas de Pastizal en las Pampas y Campos de Argentina Uruguay y sur de Brasil. Fundación Vida Silvestre Argentina, Buenos Aires

  • Bilenca D, Codesido M, González Fischer C, Pérez Carusi L (2009) Impactos de la actividad agropecuaria sobre la biodiversidad en la Ecorregión Pampeana. INTA, Buenos Aires

  • Bilenca D, Codesido M, González Fischer C, Pérez Carusi L, Zufiaurre E, Abba AM (2012) Impactos de la transformación agropecuaria sobre la biodiversidad en la provincia de Buenos Aires. Rev Mus Argentino Cienc Nat n.s. 14:189–198

    Article  Google Scholar 

  • Bilenca D, Abba AM, Corriale MJ, Pérez Carusi LC, Pedelacq ME, Zufiaurre E (2017) De venados, armadillos y coipos: los mamíferos autóctonos frente a los cambios en el uso del suelo, los manejos agropecuarios y la presencia de nuevos elementos en el paisaje rural. Mastozool Neotrop 24:277–287

    Google Scholar 

  • Boakes EH, Mcgowan PJ, Fuller RA, Chang-Qing D, Clark NE, O’Connor K, Mace GM (2010) Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol 8:e1000385. https://doi.org/10.1371/journal.pbio.1000385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazeiro A, Achkar M, Toranza C, Barthesagui L (2008) Potenciales impactos del cambio de uso de suelo sobre la biodiversidad terrestre de Uruguay. In: Volpedo AV, Fernández Reyes L (eds) Efecto de los cambios globales sobre la biodiversidad. CYTED—Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Montevideo, pp 7–21

    Google Scholar 

  • Breiner FT, Guisan A, Bergamini A, Nobis MP (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218. https://doi.org/10.1111/2041-210X.12403

    Article  Google Scholar 

  • Breiner FT, Nobis MP, Bergamini A, Guisan A (2018) Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol Evol 9:802–808. https://doi.org/10.1111/2041-210X.12957

    Article  Google Scholar 

  • Brown JL, Carnaval AC (2019) A tale of two niches: methods, concepts, and evolution. Front Biogeogr 11: e44158. https://doi.org/10.21425/F5FBG44158

  • Cabrera AL, Willink A (1973) Biogeografía de América Latina. Serie Biología, Monografía, No. 13. Organization of American States, Washington, D.C.

  • Cianfrani C, Lay GL, Maiorano L, Satizábal HF, Loy A, Guisan A (2011) Adapting global conservation strategies to climate change at the European scale: The otter as a flagship species. Biol Conserv 144:2068–2080. https://doi.org/10.1016/j.biocon.2011.03.027

    Article  Google Scholar 

  • Climatic Research Unit Time-Series (CRU-TS) 2012. Historic climate database for GIS v3.10.01. http://www.cgiar-csi.org/data/uea-cru-ts-v3-10-01-historic-climate-database (accessed 20 May 2017). http://www.cgiar-csi.org/data/uea-cru-ts-v3-10-01-historic-climate-database

  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L et al (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  • Crisci JV, Freire SE, Sancho G, Katinas L (2001) Historical biogeography of Asteraceae from Tandilia and Ventana mountain ranges (Buenos Aires, Argentina). Caldasia 23:21–41

    Google Scholar 

  • Cuyckens GAE, Pereira JA, Trigo TC, Silva MD, Gonçalves L et al (2016) Refined assessment of the geographic distribution of geoffroy’s cat (Leopardus Geoffroyi) (Mammalia: Felidae) in the Neotropics. J Zool 298:285–292. https://doi.org/10.1111/jzo.12312

    Article  Google Scholar 

  • Danielson JJ, Gesch DB (2011) Global multi-resolution terrain elevation data 2010 (GMTED2010). Open-File Report 2011–1073. U.S. Geological Survey.

  • De Frenne P, Rodríguez-Sánchez F, Coomes DA, Baeten L, Verstraeten G, Vellend M et al (2013) Microclimate moderates plant responses to macroclimate warming. Proc Natl Acad Sci USA 110:18561–18565. https://doi.org/10.1073/pnas.1311190110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C et al (2017) Ecospat: An r package to support spatial analyses and modelling of species niches and distributions. Ecography 40:774–787. https://doi.org/10.1111/ecog.02671

    Article  Google Scholar 

  • Dobrowski SZ, Thorne JH, Greenberg JA, Safford HD, Mynsberge AR, Crimmins SM, Swanson AK (2011) Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits. Ecol Monograph 81:241–257. https://doi.org/10.1890/10-1325.1

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274. https://doi.org/10.1111/j.0021-8901.2004.00881.x

    Article  Google Scholar 

  • Ferretti NE, Arnedo M, Gonzáles A (2018) Impact of climate change on spider species distribution along the La Plata River basin, southern South America: projecting future range shifts for the genus Stenoterommata (Aranae, Mygalomorphae, Nemesiidae). Ann Zool Fennici 55:123–133. https://doi.org/10.5735/086.055.0112

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  • Funk VA, Susanna A, Stuessy TF, Bayer RJ (2009) Systematics, evolution and biogeography of the Compositae. IAPT, Vienna

    Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate variability in Southern South America associated with El Niño and La Niña Events. J Clim 13:35–58. https://doi.org/10.1175/1520-0442(2000)013%3c0035:cvissa%3e2.0.co;2

    Article  Google Scholar 

  • Guerrero EL (2014) Modificaciones recientes en la distribución geográfica de opiliones (Arachnida) mesopotámicos en la provincia de Buenos Aires, Argentina, y su relación con el cambio climático. Historia Natural, Tercera Serie 4:85–104

    Google Scholar 

  • Hall AJ, Rebella CM, Ghersa CM, Culot JP (1992) Field crop systems of the Pampas. In: Pearson CJ (ed) Field crop ecosystems. Elsevier, Amsterdam, pp 413–450

    Google Scholar 

  • Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ (2019) A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25:839–852. https://doi.org/10.1111/DDI.12892

    Article  Google Scholar 

  • Heiden G, Sancho G (2016) Microgyne, en Flora do Brasil 2020, online in construction. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/PrincipalUC/PrincipalUC.do#CondicaoTaxonCP (accessed 2 May 2019)

  • Hijmans RJ (2017) raster: Geographic Data Analysis and Modelling. R package version 2.6-7. https://CRAN.R-project.org/package=raster

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) dismo: Species Distribution Modelling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo

  • Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  • Hoffman J (1989) Las variaciones climáticas ocurridas en la Argentina desde fines del siglo pasado hasta el presente. In: Prego AJ, Ruggiero RA, Conti HA, Panigatti JL, Chebez J, Hoffmann JA (eds) El deterioro del ambiente en la Argentina (Suelo-Agua- Vegetación Fauna). Fundación para la Educación, la Ciencia y la Cultura, Buenos Aires, p 15

    Google Scholar 

  • Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G et al (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109:117–161. https://doi.org/10.1007/s10584-011-0153-2

    Article  Google Scholar 

  • Köhler M, Esser LF, Font F, Souza-Chies TT, Majure LC (2020) Beyond endemism, expanding conservation efforts: what can new distribution records reveal? Perspect Plant Ecol 45:125543. https://doi.org/10.1016/j.ppees.2020.125543

    Article  Google Scholar 

  • Laterra P, Rivas M (2005) Bases y herramientas para la conservación in situ y el manejo integrado de los recursos naturales en los campos y pampas del Cono Sur. Agrociencia 9:169–178

    Google Scholar 

  • Lomba A, Pellissier L, Randin C, Vicente J, Moreira F, Honrado J, Guisan A (2010) Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biol Conserv 143:2647–2657. https://doi.org/10.1016/j.biocon.2010.07.007

    Article  Google Scholar 

  • Magrín G, Travasso MI, Rodríguez G (2005) Changes in climate and crop production during the 20th Century in Argentina. Clim Change 72:229–249. https://doi.org/10.1007/s10584-005-5374-9

    Article  Google Scholar 

  • McClenachan L, Ferretti F, Baum JK (2012) From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv Lett 5:349–359. https://doi.org/10.1111/j.1755-263X.2012.00253.x

    Article  Google Scholar 

  • Medone P, Ceccarelli S, Parham PE, Figuera A, Rabinovich JE (2015) The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection. Philos Trans R Soc Lond B Biol Sci 370:1–12. https://doi.org/10.1098/rstb.2013.0560

    Article  Google Scholar 

  • Medrano M, Herrera C (2008) Geographical structuring of genetic diversity across the whole distribution range of Narcissus longispathus, a habitat-specialist, mediterranean narrow endemic. Ann Bot 102:183–194. https://doi.org/10.1093/aob/mcn086

    Article  PubMed  PubMed Central  Google Scholar 

  • Menéndez A (2006) Tendencias hidrológicas en la Cuenca del Plata. In: Barros V, Clarke R, Silva Días P (eds) El cambio climático en la Cuenca del Plata. CONICET, Buenos Aires, pp 81–92

    Google Scholar 

  • Messina CD (1999) El fenómeno ENSO: Su influencia en los sistemas de producción de girasol, trigo y maíz en la región pampeana. Análisis retrospectivo y evaluación de estrategias para mitigar el riesgo climático. Tesis Magister Scientiae. Buenos Aires: (UBA)-INTA.

  • Miñarro F, Bilenca D (2008) The Conservation Status of Temperate Grasslands in Central Argentina. Special Report. Fundación Vida Silvestre Argentina, Buenos Aires

  • Minetti JL, Vargas W, Poblete AG, Acuña LR, Casagrande G (2003) Non-linear trends and low frequency oscillations in annual precipitation over Argentina and Chile, 1931–1999. Atmósfera 16:119–135

    Google Scholar 

  • Minoli I, Cacciali P, Morando M, Avila LJ (2018) Predicting spatial and temporal effects of climate change on the South American lizard genus Teius (Squamata: Teiidae). Amphib-Reptil 40:313–326. https://doi.org/10.1163/15685381-20181070

    Article  Google Scholar 

  • Newbold T (2018) Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc R Soc B 285:20180792. https://doi.org/10.1098/rspb.2018.0792

    Article  PubMed  PubMed Central  Google Scholar 

  • Nori J, Carrasco PA, Leynaud GC (2013) Venomous snakes and climate change: ophidism as a dynamic problem. Clim Change 122:67–80. https://doi.org/10.1007/s10584-01310196

    Article  Google Scholar 

  • Paruelo JM, Guerschman JP, Piñeiro G, Jobbágy EG, Verón SR, Baldi G, Baeza S (2006) Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. Agrociencia 10:47–61

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Modell 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing, version 3.3.3. Vienna: R Foundation for Statistical Computing

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The Biological aspects of rare plant conservation. Wiley, New York, pp 205–217

    Google Scholar 

  • Regos A, Gagne L, Alcaraz-Segura D, Honrado JP, Domínguez J (2019) Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Nat Sci Rep 9:4221. https://doi.org/10.1038/s41598-019-40766-5

    Article  CAS  Google Scholar 

  • Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modelling in ecology. Biometrics 69:274–281. https://doi.org/10.1111/j.1541-0420.2012.01824.x

    Article  PubMed  Google Scholar 

  • Rodrigues Silva GA, Antonelli A, Lendel A, Marsola Moraes E, Manfrin MH (2018) The impact of early Quaternary climate change on the diversification and population dynamics of a South American cactus species. J Biogeogr 45:76–88. https://doi.org/10.1111/jbi.13107

    Article  Google Scholar 

  • Sancho G (2014) Tribu Astereae: Microgyne. Dicotyledoneae Asteraceae: Anthemideae a Gnaphalieae. In: Zuloaga FO, Belgrano MJ, Anton AM (eds) Flora Argentina (Vol. 7, Tomo 1). Buenos Aires, Instituto de Botánica Darwinion, pp 215–216

    Google Scholar 

  • Sancho G, Ariza Espinar L (2003) Asteraceae, parte 16: Tribu III. Astereae, parte 6. Subtribus Bellidinae, Asterinae (excepto Grindelia y Haplopappus). In: Anton AM, Zuloaga FO (eds) Flora Fanerogámica Argentina, Fas. 81. Córdoba, PROFLORA, pp 1–102

    Google Scholar 

  • Sancho G, Bonifacino JM, Pruski JF (2006) Revision of Microgyne (Asteraceae: Astereae), the Correct Name for Microgynella. Syst Bot 31:851–861. https://doi.org/10.1600/036364406779695843

    Article  Google Scholar 

  • Scherrer D, Massy S, Meier S, Vittoz P, Guisan A, Serra-Diaz J (2017) Assessing and predicting shifts in mountain forest composition across 25 years of climate change. Divers Distrib 23:517–528. https://doi.org/10.1111/ddi.12548

    Article  Google Scholar 

  • Scherrer D, Christe P, Guisan A (2019) Modelling bat distributions and diversity in a mountain landscape using focal predictors in ensemble of small models. Divers Distrib 25:770–782. https://doi.org/10.1111/ddi.12893

    Article  Google Scholar 

  • Slodowicz D, Descombes P, Kikodze D, Broennimann O, Müller-Schärer H (2018) Areas of high conservation value at risk by plant invaders in Georgia under climate change. Ecol Evol 8:4431–4442. https://doi.org/10.1002/ece3.4005

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokal RR, Rohlf FJ (1979) Biometría. Principios y métodos estadísticos en la investigación biológica. H. Blume, Madrid

    Google Scholar 

  • Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cahuepé MA et al (1992) Río de La Plata grasslands. In: Coupland RT (ed) Ecosystems of the world 8A. Natural grasslands. Elsevier, New York, pp 367–407

    Google Scholar 

  • Staude IR, Vélez-Martin E, Andrade BO, Podgaiski LR, Boldrini II, Mendoca M Jr, Pillar V, Overbeck GE (2018) Local biodiversity erosion in south Brazilian grasslands under moderate levels of landscape habitat loss. J Appl Ecol 55:1241–1251

    Article  Google Scholar 

  • Teta P, Formoso A, Tammone M, de Tommaso DC, Fernández FJ, Torres J, Pardiñas UFJ (2014) Micromamíferos, cambio climático e impacto antrópico: ¿Cuánto han cambiado las comunidades del sur de América del Sur en los últimos 500 años? Therya 5:7–38. https://doi.org/10.12933/therya-14-183

  • Thiers B [continuously updated] Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/ (accessed 1 Apr 2019)

  • Tiscornia G, Achkar M, Brazeiro A (2014) Efectos de la intensificación agrícola sobre la estructura y diversidad del paisaje en la región sojera de Uruguay. Ecol Austral 24:212–219

    Article  Google Scholar 

  • Viglizzo EF, Frank FC (2006) Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quat Int 158:122–126. https://doi.org/10.1016/j.quaint.2006.05.022

    Article  Google Scholar 

  • Viglizzo EF, Frank FC, Carreño LV, Jobbágy EG, Pereyra H, Clatt J, Pincén D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biol 17:959–973. https://doi.org/10.1111/j.1365-2486.2010.02293.x

    Article  Google Scholar 

  • Wisz M, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol 9:8. https://doi.org/10.1186/1472-6785-9-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhang C, Chen M, Li J, Yang L, Huo Z, Ahmad S, Luan X (2018) Long-term ecological data for conservation: Range change in the black-billed capercaillie (Tetrao urogalloides) in northeast China (1970s–2070s). Ecol Evol 8:3862–3870. https://doi.org/10.1002/ece3.3859

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Yang L, Laguardia A, Jiang Z, Huang M, Lv J, Ren Y, Zhang W, Luan X (2017) Historical distribution of the otter (Lutra lutra) in north-east China according to historical records (1950–2014). Aquat Conserv Mar Freshw Ecosyst 26:602–606. https://doi.org/10.1002/aqc.2624

    Article  Google Scholar 

  • Zhang C, Yang L, Wu S, Xia W, Yang L, Li M, Chen M, Luan X (2020) Use of historical data to improve conservation of the black grouse (Lyrurus tetrix) in Northeast China. Ecosphere 11:e03090. https://doi.org/10.1002/ecs2.3090

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the curators of BAB, CORD, LP, MO, MVFA, NY, and SI herbaria for the loan of specimens. Special thanks are due to Martín Fileni, Camilo Pérez, and Federico Luebert who helped during the collection trips. We want to thank Cesar Benavidez for preparing the land-use layers. We are grateful to anonymous reviewers for helpful comments on the manuscript. This research was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Grant BID PICT 2012-1683, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Grant PIP 2013/2015-0446 (J. N. V. B. and G. S.), Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), Grant No. 1181677, ANID PIA/BASAL FB0002 (P. P.), and Postdoctoral Fellowships, CONICET and Universidad Nacional de La Plata (UNLP) Res. No. 1145 (J. N. V. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Noelia Viera Barreto.

Additional information

Communicated by James D. A. Millington.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viera Barreto, J.N., Sancho, G., Bonifacino, J.M. et al. Modeling the 20th-century distribution changes of Microgyne trifurcata, a rare plant of the southern South American grasslands. Plant Ecol 222, 1033–1049 (2021). https://doi.org/10.1007/s11258-021-01159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-021-01159-9

Keywords

Navigation