Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis

Abstract

Key functions of fine roots are often related to their morphological traits, yet little is known about the patterns and controls on fine-root morphological traits in the tropical forest biome. In this study, we consolidated data on key root morphological traits to describe patterns of root trait variation among different tropical regions and examined the relationships among root traits and climate and soil properties. We synthesized root traits (root diameter, specific root length (SRL), specific root area (SRA) and root tissue density (RTD)) from 59 site observations from nine countries in Africa, Asia, and Central and South America to determine the patterns and variation in root traits among different tropical regions. We also examined relationships among fine-root morphological traits, climate (mean annual precipitation, MAP; mean annual temperature, MAT) and soil properties (including available phosphorus (P), base saturation and clay content) using linear mixed-effects modelling. Plant fine-root morphological traits showed systematic variation among tropical regions—Africa, Asia and the Neotropics. Across the tropical biome, SRL was positively related to MAT, suggesting that in warmer tropical sites, plants tended to produce thinner roots with high SRL. Specific root length and SRA were positively related to base saturation, while soil available P explained some of the variation in SRL. This study demonstrates that soil properties, and to a lesser extent MAT, partially explain variation in key fine-root morphological traits across tropical forests. Importantly, we also identified wide variation in fine-root morphological trait values in the tropical biome that encompasses much of the variation seen worldwide. Consequently, attempts to predict tropical forest ecosystem functioning could improve significantly if regional differences in root traits are incorporated into process-based models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Addo-Danso SD, Prescott CE, Adu-Bredu S, Duah-Gyamfi A, Moore S, Guy RD, Forrester DI, Owusu-Afriyie K, Marshall PL, Malhi Y (2018) Fine-root exploitation strategies differ in tropical old growth and logged-over forests in Ghana. Biotropica 50:606–615

    Google Scholar 

  2. Addo-Danso SD, Prescott CE, Smith AR (2016) Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: a review. For Ecol Manag 359:332–351

    Google Scholar 

  3. Andreasson R, Gonzalez M, Augusto L, Bakker MR (2016) Comparison of ingrowth cores and ingrowth meshes in root studies: 3 years of data on Pinus pinaster and its understory. Trees 30:555–570

    Google Scholar 

  4. Banin L, Feldpausch TR, Phillips OL, Baker TR, Lloyd J, Affum-Baffoe K et al (2012) What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob Ecol Biogeogr 21:1179–1190

    Google Scholar 

  5. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Google Scholar 

  6. Bates D, Mächler M, Bolker B, Walker C (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  7. Borden KA, Thomas SC, Isaac ME (2019) Variation in fine root traits reveals nutrient-specific acquisition strategies in agroforestry systems. Plant Soil. https://doi.org/10.1007/s11104-019-04003-2

    Article  Google Scholar 

  8. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. https://doi.org/10.1111/nph.14976

    Article  PubMed  Google Scholar 

  9. Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547. https://doi.org/10.3389/fpls.2015.00547

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci 4:172. https://doi.org/10.3389/fpls.2013.00172

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. PNAS 113:8741–8746

    CAS  PubMed  Google Scholar 

  12. Clark DA, Asao S, Fisher R, Reed S, Reich PB, Ryan MG et al (2017) Reviews and synthesis: Field data to benchmark the carbon cycle models for tropical forests. Biogeosci 14:4663–4690

    Google Scholar 

  13. Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947

    PubMed  PubMed Central  Google Scholar 

  14. Comas LH, Callahan HS, Midford PE (2014) Patterns of root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecol Evol 4:2979–2990

    PubMed  PubMed Central  Google Scholar 

  15. Corlett RT, Primack RB (2006) Tropical rainforests and the need for cross-continental comparisons. Trends Ecol Evol 21:104–110

    PubMed  Google Scholar 

  16. Dalling JW, Heineman KD, Lopez OR, Wright SJ, Turner BL (2016) Nutrient availability in tropical rain forests: the paradigm of phosphorus limitation In: Goldstein G, Santiago L (eds) Tropical tree physiology: adaptations and responses in a changing environment. Basel: Springer.

    Google Scholar 

  17. Davis RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeo 30:847–877

    Google Scholar 

  18. Defrenne CE, Luke McCormack M, Roach WJ, Addo-Danso SD, Simard SW (2019) Intraspecific fine-root trait-environment relationships across Interior Douglas-Fir forests of Western Canada. Plants 8:199. https://doi.org/10.3390/plants8070199

    Article  PubMed Central  Google Scholar 

  19. de la Riva EG, Marañón T, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Villar R (2018) Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the economics spectrum? Plant Soil 424:35–48

    Google Scholar 

  20. Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    CAS  Google Scholar 

  21. Finér L, Ohashi M, Noguchi K, Hirano Y (2011) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manag 262:2008–2023

    Google Scholar 

  22. Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems: 1—Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Google Scholar 

  23. Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77

    Google Scholar 

  24. Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack LM, Fort F et al (2017) Climate, soil and plant functional types as drivers of global fine-root trait variation. J Ecol 105:1182–1196

    Google Scholar 

  25. Fujii K, Shibata M, Kitajima K, Ichie T, Kitayama K, Turner B (2018) Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol Research 33:149–160

    CAS  Google Scholar 

  26. Fyllas NM, Patiño S, Baker TR, Nardoto GB, Martinelli LA, Quesada CA et al (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosci 6:2677–2708

    Google Scholar 

  27. Gu J, Xu Y, Dong X, Wang H, Wang Z (2014) Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiol 34:415–425

    PubMed  Google Scholar 

  28. Guan K, Good SP, Caylor KK, Medvigy D, Pan M, Wood EF et al (2018) Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length. Environ Res Lett 13:025013

    Google Scholar 

  29. Hirano Y, Tanikawa T, Makita N (2017) Biomass and morphology of fine roots in eight Cryptomeria japonica stands in soils with different acid-buffering capacities. For Ecol and Manage 384:122–131

    Google Scholar 

  30. Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963

    Google Scholar 

  31. Isaac ME, Martin AR, de Melo Virginio Filho E, Rapidel B, Roupsard O, Van den Meersche K (2017) Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Front Plant Sci 6:1196. https://doi.org/10.3389/fpls.2017.01196.

  32. Iversen CM (2014) Using root form to improve our understanding of root function. New Phytol 203:707–709

    PubMed  Google Scholar 

  33. Kochsiek A, Tan S, Russo S (2013) Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecol 214:869–882

    Google Scholar 

  34. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklass EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann Bot 98:693–713

    PubMed  PubMed Central  Google Scholar 

  35. Leuschner C, Harteveld M, Hertel D (2009) Consequences of increasing forest use intensity for biomass, morphology and growth of fine roots in a tropical moist forest on Sulawesi, Indonesia. Agric Ecosys and Environ 129:474–481

    Google Scholar 

  36. Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56

    CAS  Google Scholar 

  37. Lima TTS, Miranda IS, Vasconselos SS (2012) Fine-root production in two secondary forest sites with distinct ages in Eastern Amazon. Acta Amazonia 42:95–104

    Google Scholar 

  38. Lima TTS, Miranda IS, Vasconselos SS (2010) Effects of water and nutrient availability on fine root growth in Eastern Amazonia forest regrowth, Brazil. New Phytol 187:622–630

    PubMed  Google Scholar 

  39. Lugli LF, Andersen KM, Aragão LEOC, Cordeiro AL, Cunha HFV, Fuchslueger L et al (2019) Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant Soil. https://doi.org/10.1007/s1104-019-03963-9

    Article  Google Scholar 

  40. Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht.

    Google Scholar 

  41. Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature 555:94–97

    CAS  PubMed  Google Scholar 

  42. Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, Abdul Rahim N (2012) Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree Physiol 32:303–312

    PubMed  Google Scholar 

  43. Malhi Y, Doughty C, Galbraith D (2011) The allocation of ecosystem net primary productivity in tropical forests. Philos Trans R Soc of London B Biol Sci 366:3225–3245

    CAS  Google Scholar 

  44. McCormack ML, Guo D, Iversen C, Chen W, Eissenstat DM, Fernandez CW et al (2017) Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol 215:27–37

    PubMed  Google Scholar 

  45. McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D et al (2015) Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Google Scholar 

  46. McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831

    Google Scholar 

  47. Metcalfe DB, Meir P, Aragão LEOC, da Costa ACL, Braga AP, Gonçalves PHL, de Athaydes SJJ, de Almeida SS, Dawson LA, Malhi Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199

    CAS  Google Scholar 

  48. Moore S, Adu-Bredu S, Duah-Gyamfi A, Addo-Danso SD, Ibrahim F, Mbou A, de Grandcourt A, Valentini R, Nicolini G, Djagbletey G, Owusu-Afriyie K, Gvozdevaite A, Oliveras I, Ruiz-Jean M, Malhi Y (2018) Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Glob Change Biol 24:e496–e510

    Google Scholar 

  49. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  50. Okada K, Aiba S, Kitayama K (2017) Influence of temperature and soil nitrogen and phosphorus availabilities on fine-root productivity in tropical rainforests on Mount Kinabalu, Borneo. Ecol Res 32:145–156

    CAS  Google Scholar 

  51. Oksanen J (2017) Vegan: an introduction to ordination. R package 3.4.3 version

  52. Olmo M, Lopez-Iglesias B, Villar R (2014) Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species. Implications for a drier climate. Plant Soil 384:113–129

    CAS  Google Scholar 

  53. Ostonen I, Truu M, Helmisaari H, Lukac M, Borken W, Vanguelova E, Godbold DL, Lõhmus K, Zang U, Tedersoo L, Preem J-K, Rosenvald K, Aosaar J, Armoliatis K, Frey J, Kabral N, Kukumägi M, Leppälammi-Kujansuu J, Lindroos A-J, Merilä P, Napa Ü, Nöjd P, Parts K, Uri V, Varik M, Truu J (2017) Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytol 215:977–991

    CAS  PubMed  Google Scholar 

  54. Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosystems 141:426–442

    Google Scholar 

  55. Ouimet R, Camiré C, Furlan V (1996) Effects of soil base saturation and endomycorrhization on growth and nutrient status of sugar maple seedlings. Can J Soil Sci 76:109–115

    Google Scholar 

  56. Posada JM, Schuur EAG (2011) Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165:783–795

    PubMed  Google Scholar 

  57. Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Rousard O, Thammahacksa C, Stokes A (2015) Root functional parameters along a land-use gradient: evidence of a community-level spectrum. J Ecol 103:361–373

    Google Scholar 

  58. Reich PB (2014) The world-wide ‘fast-slow’ plant economic spectrum: a traits manifesto. J Ecol 102:275–301

    Google Scholar 

  59. Rao IM, Miles JW, Beebe SE, Horst WJ (2016) Root adaptations to soil with low fertility and aluminium toxicity. Ann Bot 118:593–605

    CAS  PubMed Central  Google Scholar 

  60. Richter DD, Babbar LI (1991) Soil diversity in the tropics. Adv Ecol Res 21:315–389

    Google Scholar 

  61. Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K-F, Stokes A (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826

    PubMed  Google Scholar 

  62. Shanahan TM, Overpeck JT, Anchukaitis KJ, Beck JW, Cole JE, Dettman DL, Peck JA, Scholz CA, King JW (2009) Atlantic forcing of persistent drought in West Africa. Science 324:377–380

    CAS  PubMed  Google Scholar 

  63. Simpson AH, Richardson SJ, Laughlin DC (2016) Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob Ecol and Biogeo 25:964–978

    Google Scholar 

  64. Slik JWF, Arroyo-Rodríguez V, Aiba S-I, Alvarez-Loayza P, Alves LF, Ashton P et al (2015) An estimate of the number of tropical tree species. PNSA 112:7472–7477

    Google Scholar 

  65. Smithwick EA, Lucash MS, McCormack ML, Sivandra G (2014) Improving the representation of roots in terrestrial models. Ecol Model 291:193–204

    CAS  Google Scholar 

  66. Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    CAS  PubMed  Google Scholar 

  67. Tian M, Yu G, He N, Hou J (2016) Leaf morphological and anatomical traits from tropical to temperate. Sci Rep 6:19703

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017) A worldview of roots: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol 215:1562–1573

    Google Scholar 

  69. Wang R, Wang Q, Zhao N, Xu Z, Zhu X, Jiao C, Yu G, He N (2018) Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits. Funct Ecol 32:29–39

    Google Scholar 

  70. Wurzburger N, Wright SJ (2015) Fine-root response to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96:2137–2146

    PubMed  Google Scholar 

  71. Zadworny M, McCormack ML, Žytkowiak R, Karolewski P, Mucha J, Oleksyn J (2017) Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob Change Biol 23:1218–1231

    Google Scholar 

  72. Zangaro W, De Assis RL, Rostirola LA, De Souza PB, Gonçalves MC, Andrade G, Nogueira MA (2008) Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 19:37–45

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Lucy Amissah for providing valuable feedback on an earlier version of the manuscript. We are also grateful to the field and laboratory assistants who helped with collecting some of the unpublished data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shalom D. Addo-Danso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lori Biederman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 225 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Addo-Danso, S.D., Defrenne, C.E., McCormack, M.L. et al. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecol 221, 1–13 (2020). https://doi.org/10.1007/s11258-019-00986-1

Download citation

Keywords

  • Fine roots
  • Mean annual precipitation
  • Root diameter
  • Soil available phosphorus
  • Specific root length
  • Tropical forests