Skip to main content
Log in

Nutrient limitation of plant productivity in scrubby flatwoods: does fire shift nitrogen versus phosphorus limitation?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Differences in the biogeochemistry of nitrogen (N) and phosphorus (P) lead to differential losses and inputs during and over time after fire such that fire may affect nutrient limitation of primary productivity. We conducted a nutrient addition experiment in scrubby flatwoods, a Florida scrub community type, to test the hypothesis that nutrient limitation of primary productivity shifts from N limitation in recently burned sites to P limitation in longer unburned sites. We added three levels of N, P, and N and P together to sites 6 weeks, 8 years, and 20 years postfire and assessed the effects of nutrient addition on above- and belowground productivity and nutrient concentrations. At the community level, nutrient addition did not affect aboveground biomass, but root productivity increased with high N + P addition in sites 8 and 20 years after fire. At the species level, N addition increased leaf biomass of saw palmetto (Serenoa repens) in sites 6 weeks and 20 years postfire, while P addition increased foliar %P and apical shoot growth of scrub oak (Quercus inopina) in sites 8 and 20 years postfire, respectively. Contrary to our hypothesis, nutrient limitation does not appear to shift with time after fire; recently burned sites show little evidence of nutrient limitation, while increased belowground productivity indicates that scrubby flatwoods are co-limited by N and P at intermediate and longer times after fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamson WG (1999) Episodic reproduction in two fire-prone palms, Serenoa repens and Sabal etonia (Palmae). Ecology 80:100–115

    Article  Google Scholar 

  • Abrahamson WG, Layne JN (2003) Long-term patterns of acorn production for five oak species in xeric Florida uplands. Ecology 84:2476–2492

    Article  Google Scholar 

  • Abrahamson WG, Johnson AF, Layne JN, Peroni PA (1984) Vegetation of the Archbold Biological Station, Florida: an example of the southern Lake Wales Ridge. Fla Sci 47:209–250

    Google Scholar 

  • Ainsworth EA, Tranel PJ, Drake BG, Long SP (2003) The clonal structure of Quercus geminata revealed by conserved microsatellite loci. Mol Ecol 12:527–532

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Clare S, Mack MC (2015) Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest? PLoS ONE 10(4):e0123796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez-Clare S, Mack MC, Brooks M (2013) A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94:1540–1551

    Article  PubMed  CAS  Google Scholar 

  • Berry DM, Menges ES (1997) Post-fire changes in resource limitation of Florida scrub plants. In: Proceedings—fire effects on rare and endangered species and habitat conference, pp 197–201

  • Bigelow SW, Canham CD (2007) Nutrient limitation of juvenile trees in a northern hardwood forest: calcium and nitrate are preeminent. For Ecol Manag 243:310–319

    Article  Google Scholar 

  • Boring LR, Hendricks JJ, Wilson CA, Mitchell RJ (2004) Season of burn and nutrient losses in a longleaf pine ecosystem. Int J Wildland Fire 13:443–453

    Article  Google Scholar 

  • Bowen BJ, Pate JS (1993) The significance of root starch in post-fire shoot recovery of the resprouter Stirlingia latifolia R. Br. (Proteaceae). Ann Bot 72:7–16

    Article  Google Scholar 

  • Bret-Harte MS, García EA, Sacré VM, Whorley JR, Wagner JL, Lippert SC, Chapin FS III (2004) Plant and soil responses to neighbour removal and fertilization in Alaskan tussock tundra. J Ecol 92:635–647

    Article  Google Scholar 

  • Britton AJ, Helliwell RC, Fisher JM, Gibbs S (2008) Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland. Environ Pollut 156:409–416

    Article  PubMed  CAS  Google Scholar 

  • Brookshire ENJ, Gerber S, Menge DNL, Hedin LO (2012) Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol Lett 15:9–16

    Article  PubMed  CAS  Google Scholar 

  • Brown RB, Stone EL, Carlisle VW (1990) Soils. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University of Central Florida Press, Orlando, pp 35–69

    Google Scholar 

  • Brown ALP, Garland JL, Day FP (2009) Physiological profiling of soil microbial communities in a Florida scrub-oak ecosystem: spatial distribution and nutrient limitation. Microb Ecol 57:14–24

    Article  PubMed  CAS  Google Scholar 

  • Caffrey JM, Murrell MC, Wigand C, McKinney R (2007) Effect of nutrient loading on biogeochemical and microbial processes in a New England salt marsh. Biogeochemistry 82:251–264

    Article  CAS  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  PubMed  Google Scholar 

  • Chapin FS III, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New York

    Google Scholar 

  • Chen Y, Randerson JT, van der Werf GR, Morton DC, Mu M, Kasibhatla PS (2010) Nitrogen deposition in tropical forests from savanna and deforestation fires. Glob Change Biol 16:2024–2038

    Article  Google Scholar 

  • Cook GD (1994) The fate of nutrients during fires in a tropical savanna. Aust J Ecol 19:359–365

    Article  Google Scholar 

  • Craine JM, Morrow C, Stock WD (2008) Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol 179:829–836

    Article  PubMed  CAS  Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forests II. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76:222–235

    Article  PubMed  Google Scholar 

  • D’Angelo E, Crutchfield J, Vandiviere M (2001) Rapid, sensitive, microscale determination of phosphate in water and soil. J Environ Qual 30:2206–2209

    Article  PubMed  Google Scholar 

  • D’Antonio CM, Mack MC (2006) Nutrient limitation in a fire-derived, nitrogen-rich Hawaiian grassland. Biotropica 38:458–467

    Article  Google Scholar 

  • Darby FA, Turner RE (2008) Below- and aboveground biomass of Spartina alterniflora: response to nutrient addition in a Louisiana salt marsh. Estuar Coast 31:326–334

    Article  CAS  Google Scholar 

  • Debano LF, Conrad CE (1978) The effect of fire on nutrients in a chaparral ecosystem. Ecology 59:489–497

    Article  CAS  Google Scholar 

  • Diehl P, Mazzarino MJ, Fontenla S (2008) Plant limiting nutrients in Andean-Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. For Ecol Manag 255:2973–2980

    Article  Google Scholar 

  • Durán J, Rodríguez A, Fernández-Palacios JM, Gallardo A (2010) Changes in leaf nutrient traits in a wildfire chronosequence. Plant Soil 331:69–77

    Article  CAS  Google Scholar 

  • El Omari B, Aranda X, Verdaguer D, Pascual G, Fleck I (2003) Resource remobilization in Quercus ilex L. resprouts. Plant Soil 252:349–357

    Article  Google Scholar 

  • Ellsworth PZ, Sternberg LSL (2015) Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 8:538–551

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystem. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Enright NJ, Fontaine JB, Westcott VC, Lade JC, Miller BP (2011) Fire interval effects on persistence of resprouter species in Mediterranean-type shrublands. Plant Ecol 212:2071–2083

    Article  Google Scholar 

  • Fisher JB, Jayachandran K (1999) Root structure and arbuscular mycorrhizal colonization of the palm Serenoa repens under field conditions. Plant Soil 217:229–241

    Article  Google Scholar 

  • Foster TE, Schmalzer PA, Fox GA (2014) Timing matters: the seasonal effect of drought on tree growth. J Torrey Bot Soc 141:225–241

    Article  Google Scholar 

  • Foster TE, Schmalzer PA, Fox GA (2015) Seasonal climate and its differential impact on growth of co-occurring species. Eur J For Res 134:497–510

    Article  Google Scholar 

  • Giesen TW, Perakis SS, Cromack K Jr (2008) Four centuries of soil carbon and nitrogen change after stand-replacing fire in a forest landscape in the western Cascade Range of Oregon. Can J For Res 38:2455–2464

    Article  CAS  Google Scholar 

  • Gillon D, Rapp M (1989) Nutrient losses during a winter low-intensity prescribed fire in a Mediterranean forest. Plant Soil 120:69–77

    Article  Google Scholar 

  • Grimshaw HJ, Dolske DA (2002) Rainfall concentrations and wet atmospheric deposition of phosphorus and other constituents in Florida, U.S.A. Water Air Soil Pollut 137:117–140

    Article  CAS  Google Scholar 

  • Gross KL, Peters A, Pregitzer KS (1993) Fine root growth and demographic responses to nutrient patches in four old-field plant species. Oecologia 95:61–64

    Article  PubMed  Google Scholar 

  • Güsewell S (2004) N:P rations in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  PubMed  Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76:493–509

    Article  Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255

    Article  Google Scholar 

  • Herbert DA, Fownes JH (1995) Phosphorus limitation of a forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29:223–235

    Article  CAS  Google Scholar 

  • Hernández DL, Hobbie SE (2008) Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia 158:535–543

    Article  PubMed  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Iversen CM, Norby RJ (2008) Nitrogen limitation in a sweetgum plantation: implications for carbon allocation and storage. Can J For Res 38:1021–1032

    Article  CAS  Google Scholar 

  • Iverson LR, Hutchinson TF (2002) Soil temperature and moisture fluctuations during and after prescribed fire in mixed-oak forests, USA. Nat Area J 22:296–304

    Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  • Knox KJE, Clarke PJ (2005) Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Funct Ecol 19:690–698

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Ladwig LM, Collins SL, Swann AL, Xia Y, Allen MF, Allen EB (2012) Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia 169:177–185

    Article  PubMed  Google Scholar 

  • Langely JA, Drake BG, Hungate BA (2002) Extensive belowground carbon storage supports roots and mycorrhizae in regenerating scrub oaks. Oecologia 131:542–548

    Article  Google Scholar 

  • Maguire AJ, Menges ES (2011) Post-fire growth strategies of resprouting Florida scrub vegetation. Fire Ecol 7:12–25

    Article  Google Scholar 

  • Marcos E, Villalón C, Calvo L, Luis-Calabuig E (2009) Short-term effects of experimental burning on soil nutrients in the Cantabrian heathlands. Ecol Eng 35:820–828

    Article  Google Scholar 

  • Maynard DG, Paré D, Thiffault E, Lafleur B, Hogg KE, Kishchuk B (2014) How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ Rev 22:161–178

    Article  CAS  Google Scholar 

  • Mayor JR, Wright SJ, Turner BL (2014) Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. J Ecol 102:36–44

    Article  CAS  Google Scholar 

  • McKinley DC, Romero JC, Hungate BA, Drake BG, Megonigal JP (2009) Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Glob Change Biol 15:2035–2048

    Article  Google Scholar 

  • Menges ES (2007) Integrating demography and fire management: an example from Florida scrub. Aust J Bot 55:261–272

    Article  Google Scholar 

  • Menges ES, Kohfeldt N (1995) Life history strategies of Florida scrub plants in relation to fire. Bull Torrey Bot Club 122:282–297

    Article  Google Scholar 

  • Miller AJ, Schuur EAG, Chadwick OA (2001) Redox control of phosphorus pools in Hawaiian montane forest soils. Geoderma 102:219–237

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36

    Article  Google Scholar 

  • Myers RL (1990) Scrub and high pine. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University of Central Florida Press, Orlando, pp 150–193

    Google Scholar 

  • Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131–139

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kull K (2005) Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. Acta Oecol 28:345–356

    Article  Google Scholar 

  • Nzunda EF, Griffiths ME, Lawes MJ (2014) Resource allocation and storage relative to resprouting ability in wind disturbed coastal forest trees. Evol Ecol 28:735–749

    Article  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycles. https://doi.org/10.1029/2003gb002145

    Article  Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38

    Article  Google Scholar 

  • Ostertag R (2001) Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests. Ecology 82:485–499

    Article  Google Scholar 

  • Pate JS, Froend RH, Bowen BJ, Hansen A, Kuo J (1990) Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of S.W. Australia. Ann Bot 65:585–601

    Article  Google Scholar 

  • Pekin BK, Boer MM, Wittkuhn RS, Macfarlane C, Grierson PF (2012) Plant diversity is linked to nutrient limitation of dominant species in a world biodiversity hotspot. J Veg Sci 23:745–754

    Article  Google Scholar 

  • Pellegrini AFA, Hedin LO, Staver C, Govender N (2015) Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96:1275–1285

    Article  PubMed  Google Scholar 

  • Pivello VR, Coutinho LM (1992) Transfer of macro-nutrients to the atmosphere during experimental burnings in an open cerrado (Brazilian savanna). J Trop Ecol 8:487–497

    Article  Google Scholar 

  • Qian Y, Miao SL, Gu B, Li YC (2009) Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades. J Environ Qual 38:451–464

    Article  PubMed  CAS  Google Scholar 

  • Radulovich R, Sollins P (1991) Nitrogen and phosphorus leaching in zero-tension drainage from a humid tropical soil. Biotropica 23:84–87

    Article  Google Scholar 

  • Raison RJ, Khanna PK, Woods PV (1985a) Mechanisms of element transfer to the atmosphere during vegetation fires. Can J For Res 15:132–140

    Article  CAS  Google Scholar 

  • Raison RJ, Khanna PK, Woods PV (1985b) Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Can J For Res 15:657–664

    Article  CAS  Google Scholar 

  • Resende JCF, Markewitz D, Klink CA, Bustamante MMdC, Davidson EA (2011) Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequent burning. Biogeochemistry 105:105–118

    Article  CAS  Google Scholar 

  • Romme WH, Tinker DB, Stakes GK, Turner MG (2009) Does inorganic nitrogen limit plant growth 3–5 years after fire in a Wyoming, USA, lodgepole pine forest? For Ecol Manag 257:829–835

    Article  Google Scholar 

  • Saha S, Strazisar TM, Menges ES, Ellsworth P, Sternberg L (2008) Linking the patterns in soil moisture to leaf water potential, stomatal conductance, growth, and mortality of dominant shrubs in the Florida scrub ecosystem. Plant Soil 313:113–127

    Article  CAS  Google Scholar 

  • Saha S, Menges ES, Catenazzi A (2010) Does time since fire explain plant biomass allocation in the Florida, USA, scrub ecosystem? Fire Ecol 6:13–25

    Article  Google Scholar 

  • Sardans J, Rodà F, Peñuelas J (2004) Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. Plant Ecol 174:305–317

    Article  Google Scholar 

  • Schafer JL (2010) Effects of fire on nutrient availability and limitation in Florida scrub ecosystems. Dissertation, University of Florida

  • Schafer JL, Mack MC (2010) Short-term effects of fire on soil and plant nutrient in palmetto flatwoods. Plant Soil 334:433–447

    Article  CAS  Google Scholar 

  • Schafer JL, Mack MC (2013) Effects of time-since-fire on soil nutrient dynamics in Florida scrubby flatwoods. Fla Sci 76:417–435

    CAS  Google Scholar 

  • Schafer JL, Mack MC (2014) Foliar nutrient concentrations and ratios of scrubby flatwoods species change with time after fire. Castanea 79:237–245

    Article  Google Scholar 

  • Seaman BJ, Albornoz FE, Armesto JJ, Gaxiola A (2015) Phosphorus conservation during post-fire regeneration in a Chilean temperate rainforest. Austral Ecol 40:709–717

    Article  Google Scholar 

  • Seastedt TR, Vaccaro L (2001) Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, U.S.A. Arct Antarct Alp Res 33:100–106

    Article  Google Scholar 

  • Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR, Drake BG (2009) Disturbance, rainfall, and constrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Glob Change Biol 15:356–367

    Article  Google Scholar 

  • Takahashi MK, Horner LM, Kubota T, Keller NA, Abrahamson WG (2011) Extensive clonal spread and extreme longevity in saw palmetto, a foundation clonal plant. Mol Ecol 20:3730–3742

    Article  PubMed  Google Scholar 

  • Tanner EVJ, Kapos V, Franco W (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:78–86

    Article  Google Scholar 

  • Teng Y, Timmer VR (1995) Rhizosphere phosphorus depletion induced by heavy nitrogen fertilization in forest nursery soils. Soil Sci Soc Am J 59:227–233

    Article  CAS  Google Scholar 

  • Villani EMA, Barros NF, Novais RF, Comerford NB, Costa LM, Neves JCL, Alvarez VH (1998) Phosphorus diffusive flux as affected by phosphate source and incubation time. Soil Sci Soc Am J 62:1057–1061

    Article  CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea—how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  PubMed  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  PubMed  CAS  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  PubMed  CAS  Google Scholar 

  • Weekley CW, Gagnon D, Menges ES, Quintana-Ascencio PF (2007) Variation in soil moisture in relation to rainfall, vegetation, gaps, and time-since-fire in Florida scrub. Ecoscience 14:277–386

    Article  Google Scholar 

  • Wei H-W, Lü X-T, Lü F-M, Han X-G (2014) Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe. PLoS ONE 9(3):e90057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White EM, Thompson WW, Gartner FR (1973) Heat effects on nutrient release from soils under Ponderosa pine. J Range Manag 26:22–24

    Article  CAS  Google Scholar 

  • Wieder WR, Cleveland CC, Smith WK, Todd-Brown K (2015) Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci 8:441–444

    Article  CAS  Google Scholar 

  • Wittkuhn RS, Lamont BB, He T (2017) Combustion temperatures and nutrient transfers when grasstrees burn. For Ecol Manag 300:179–187

    Article  Google Scholar 

  • Wotton BM, Gould JS, McCaw WH, Cheney NP, Taylor SW (2012) Flame temperature and residence time of fires in dry eucalypt forest. Int J Wildland Fire 21:270–281

    Article  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2001) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625

    Article  Google Scholar 

  • Wunderlin RP, Hansen BF (2011) Guide to the vascular plants of Florida, 3rd edn. University Press of Florida, Gainesville

    Google Scholar 

Download references

Acknowledgements

We thank S. Alvarez-Clare, P. Bohlen, T. Bostic, R. Burnett, K. Earnshaw, J. Lange, N. Johnson, O. E. Martin, N. Motzer, A. Peterson, H. Price, A. Rivero, M. Steenson, O. Takano, J. Tucker, M. Vasconcelos, O. Vasquez, and A. Williams for help with field and/or lab work. We thank X. Walker for statistical advice. We owe our special thanks to Charlotte Schafer for help with both field and lab work. This manuscript was improved by comments from the associate editor, Dr. Carissa Wonkka, and two anonymous reviewers. This research was funded in part by a Florida Native Plant Society Endowment Fund Grant to J. Schafer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Schafer.

Additional information

Communicated by Carissa Lyn Wonkka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schafer, J.L., Mack, M.C. Nutrient limitation of plant productivity in scrubby flatwoods: does fire shift nitrogen versus phosphorus limitation?. Plant Ecol 219, 1063–1079 (2018). https://doi.org/10.1007/s11258-018-0859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-018-0859-6

Keywords

Navigation