Skip to main content

Advertisement

Log in

Establishment of invasive plant species in canopy gaps on Robinson Crusoe Island

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

To design preventive and management measures it is crucial to identify the mechanisms that facilitate an invasion process. We evaluated how microsites affect establishment success of the alien small tree Aristotelia chilensis, the alien climber Rubus ulmifolius, and endemic tree species on Robinson Crusoe Island forest. Seedling and sapling densities were estimated in 65 canopy gaps in two forest stands (PEY and Villagra) along a canopy forest-gap gradient, and in three microsites (mound, pit, and trunk) of canopy gap-maker trees. Two statistical models were applied to evaluate the effects of the position in the gap (center, edge, and close forest) and substrate microsites in relation to topographic and structural variables on invasive and endemic species establishment. The density of invasive species was higher in the center of canopy gaps and forest edges than under forest canopy. Invasive plants were present in 86.5 % (n = 32 gaps in PEY) and 89.8 % (n = 25 forest gaps) in Villagra. A higher seedling and sapling density of endemic rather than invasive species was found in canopy-gap center and gap edges. However, trunks, mounds, and pits were dominated by invasive species. We found different responses in seedlings, saplings, and juvenile stages in relation to the explanatory variables studied and between the two stands. The decomposition state of gap-maker trees, which was used as a proxy of gap age, was the only variable that showed the same tendency in the two forest stands and for both invasive and endemic seedlings. In this case, we found that the densities of invasive and endemic seedlings were lower in older gaps, but sapling densities were higher in older gaps. Based on the results we cannot conclude a general pattern of seedling, sapling, and juvenile establishment in forest gaps for either invasive species, but in some gaps the invasion seems to start in trunks, mounds, and pits. We recommend focusing invasive species control on mounds and pits in some forest stands; and in general, we recommend controlling invasive saplings, more than seedlings or juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asner GP, Flint-Hughes R, Vitousek PT, Knapp DE, Kennedy-Bowdoin T, Boardman J, Martin RE, Eastwood M, Green RO (2008) Invasive plants transform the three-dimensional structure of rain forest. Proc Natl Acad Sci USA 105:4519–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baret S, Nicolini E, Le Bourgeois T, Strasberg D (2003) Developmental patterns of the invasive bramble (Rubus alceifolius Poiret, Rosaceae) in Réunion Island: an architectural and morphometric analysis. Ann Bot (Lond) 91:39–48

    Article  Google Scholar 

  • Baret S, Cournac L, Thebaud C, Edwards P, Strasberg D (2008) Effects of canopy gap size on recruitment and invasion on the non-indigenous Rubus alcelifolius in lowland tropical rain forest on Réunion. J Trop Ecol 24:337–345

    Article  Google Scholar 

  • Bastias I (2014) Diversidad y establecimiento de helechos en claros de dosel y su aplicación en restauración ecológica, Isla Robinson Crusoe, Archipiélago de Juan Fernández. Tesis de Ingeniería en Recursos Naturales Universidad de Chile. Santiago, Chile

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371

    Article  Google Scholar 

  • Bazzaz FA (1991) Regeneration of tropical forests: physiological responses of pioneer and secondary species. In: Gomez-Pompa A, Withmore TC, Hadley M (eds) Rain forest regeneration and management. Parthenon Publishing Group, Parkridge, pp 91–118

    Google Scholar 

  • Beatty SW (1984) Influence of micro-topography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419

    Article  Google Scholar 

  • Beckage B, Clark JS (2003) Seedling survival and growth of three forest tree species: the role of spatial heterogeneity. Ecology 84:1849–1861

    Article  Google Scholar 

  • Beckage B, Lavine M, Clark JS (2005) Survival of tree seedlings across space and time: estimates from long-term count data. J Ecol 93:1177–1184

    Article  Google Scholar 

  • Brokaw N, Busing RT (2000) Niche versus chance and tree diversity in forest gaps. Trends Ecol Evol 15:183–188

    Article  PubMed  Google Scholar 

  • Burnham KM, Lee TD (2010) Canopy gaps facilitate establishment, growth, and reproduction of invasive Frangula alnus in a Tsuga canadensis forest. Biol Invasions 12:1509–1520

    Article  Google Scholar 

  • Busing RT, White PS (1997) Species diversity and small-scale disturbance in an old-growth temperate forest: a consideration of gap partitioning concepts”. Oikos 1997:562–568

    Article  Google Scholar 

  • Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forest. Can J For Res 20:620–631

    Article  Google Scholar 

  • Carlton GC, Bazzaz FA (1998) Resource congruence and forest regeneration following an experimental hurricane blowdown. Ecology 79:1305–1319

    Article  Google Scholar 

  • Carmona MR, Armesto JJ, Aravena JC, Pérez CA (2002) Coarse woody debris biomass in successional and primary temperate forest in Chiloé Island, Chile. For Ecol Manag 164:265–275

    Article  Google Scholar 

  • Chesson PL, Warner RR (1981) Environmental variability promotes coexistence in lottery competitive systems. Am Nat 117:923–943

    Article  Google Scholar 

  • Christie DA, Armesto JJ (2003) Regeneration microsites and tree species coexistence in temperate rain forests of Chiloé Islands, Chile. J Ecol 91:776–784

    Article  Google Scholar 

  • Clebsch EE, Busing RT (1989) Secondary succession, gap dynamics, and community structure in a southern Appalachian cove forest. Ecology 70:728–735

    Article  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    Article  Google Scholar 

  • Cronk QCB, Fuller JL (2001) Plant invaders: the threat to natural ecosystems. Earthscan publication, London

    Google Scholar 

  • Cuevas JG, Van Leersum G (2001) Project “conservation, restoration and development of the Juan Fernández Islands, Chile”. Rev Chil Hist Nat 74:899–910

    Article  Google Scholar 

  • Dalling JW, Hubbell SP (2002) Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. J Ecol 90:557–568

    Article  Google Scholar 

  • Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity. Biosci 53:481–489

    Article  Google Scholar 

  • Davis MA, Pergl J, Truscott AM, Kollmann J, Bakker JP, Domenech R, Prach K, Prieur-Richard AH, Veeneklaas RM, Pysek P, Moral R, Hobbs RJ, Collins RL, Pickett ST, Reich PB (2005) Vegetation change: a reunifying concept in plant ecology. Perspect Plant Ecol Evol Syst 7:69–76

    Article  Google Scholar 

  • Díaz I (2012) Análisis de la evolución espacio-temporal de la invasión de Rubus ulmifolius, Aristotelia chilensis y Ugni molinae en la Isla Robinson Crusoe. Tesis Ingeniero en Recursos Naturales. Universidad de Chile. Santiago, Chile

  • Dirnböck T, Greimler J, Lopez S, Stuessy TF (2003) Predicting future threats to the native vegetation on Robinson Crusoe Island, Juan Fernandez Archipiélago, Chile. Conserv Biol 17:1650–1659

    Article  Google Scholar 

  • Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252

    Article  Google Scholar 

  • Gálhidy L, Mihók B, Hagyó A, Rajkai K, Standovár T (2006) Effects of gap size and associated changes in light and soil moisture on the understory vegetation of a Hungarian beech forest. Plant Ecol 183:133–145

    Article  Google Scholar 

  • GBIF (The Global Biodiversity Information) 2014. http://www.gbif.org/species/5651082

  • Gorchov DL, Thompson E, O’Neil J, Whigham D, Noe DA (2011) Treefall gaps required for establishment but not survival of invasive Rubus phoenicolasius in deciduous forest, Maryland, USA. Plant Species Biol 26:221–234

    Article  Google Scholar 

  • Gordillo J (1990) The colonization of San Cristobal, Galapagos Islands - a historical perspective. In: Lawesson JE, Hamann O, Rogers G, Reck G and Ochoa H (eds) Botanical research and management in Galapagos. Monographs in Sytematic Botany from the Missouri Botanical Garden, pp 247–250

  • Greimler J, Stuessy TF, Swenson U, Baeza CM, Matthei O (2002) Plant invasions on an oceanic archipelago. Biol Invasions 4:73–85

    Article  Google Scholar 

  • Hahn I, Römer U, Vergara P, Walter H (2009) Biogeography, diversity, and conservation of the birds of the Juan Fernández Islands, Chile. Vertebr Zool 53:109–114

    Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity and invasion: implications for conservation. Conserv Biol 6:324–337

    Article  Google Scholar 

  • Hobbs RJ, Humphries SE (1995) An integrated approach to the ecology and management of plant invasions. Conserv Biol 9:761–770

    Article  Google Scholar 

  • Hubbell SP, Foster RB (1986) Canopy gaps and the dynamics of a neotropical forest. In: Crawley MJ (ed) Plant ecology. Blackwell Scientific Publications, Oxford, pp 77–96

    Google Scholar 

  • Kellner JR, Clark DB, Hubbell SP (2009) Pervasive canopy dynamics produce short term stability in a tropical rain forest landscape. Ecol Lett 12:155–164

    Article  PubMed  Google Scholar 

  • King SE, Grace JB (2000) The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cilindrica (Poaceae). Am J Bot 87:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasions biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Lawesson JE (1990) Alien plants in the Galapagos Islands, a summary. In: Lawesson JE, Hamann O, Rogers G, Reck G, Ochoa H (eds) Botanical research and management in Galapagos. Monographs in sytematic botany from the Missouri Botanical Garden, pp 15–20

  • Levine JM, Adler PB (2004) Yelenik SG (2004) Meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–225

    Article  PubMed  Google Scholar 

  • Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246

    Article  PubMed  Google Scholar 

  • Mazzolari A, Comparatorea V, Bedmarb F (2011) Control of elmleaf blackberry invasion in a natural reserve in Argentina. J Nat Conserv (Jena) 19:185–191

    Article  Google Scholar 

  • McAlister S, Palmer, Arevalo JR, JK DeCoster (2000) Species composition on tipup mounds and pits created by catastrophic windthrow in a Minessota forest. Proceedings IAVC Symposium 104–107

  • McCarthy J (2001) Gap dynamics of forest trees: a review with particular attention to boreal forests. Environ Rev 9:1–59

    Article  Google Scholar 

  • Milton SJ, Wilson J, Richardson DM, Seymour C, Dean W, Iponga D, Procheş S (2007) Invasive alien plants infiltrate bird-mediated shrub nucleation processes in arid savanna. J Ecol 95:648–661

    Article  Google Scholar 

  • Moles A, Flores-Moreno H, Bonser SP (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116–127

    Article  Google Scholar 

  • Mollaei S, KoochY, Mohsen S (2014) Dynamic of plant composition and regeneration following windthrow in a temperate beech forest international scholarly research http://dx.doi.org/10.1155/2014/421457

  • Molofsky J, Augspurger CK (1992) The effects of leaf litter on early seedling establishment in a tropical forest. Ecology 73:68–77

    Article  Google Scholar 

  • Montgomery RA, Chazdon RL (2002) Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165–174

    Article  Google Scholar 

  • Muñoz A, González ME (2006) Aristotelia chilensis (Mol) Stuntz. In: Donoso C (ed) Las especies arbóreas de los bosques templados de Chile y Argentina. Marisa Cuneo Ed, Valdivia, pp 166–172

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Numata S, Yasuda M, Okuda T, Kachi N, Nur Supardi MN (2006) Canopy gap dynamics of two different forests stands in a Malasian lowland rain forest. J Trop For Sci 18:109–116

    Google Scholar 

  • Pauchard A, Langdon B, Peña E (2008) Potencial invasivo de Pseudotsuga menziesii (Mirb.) Franco en bosques nativos del centro-sur de Chile: Patrones y recomendaciones. In: Mujica R, Grosse H, Müller-Using B (eds) Bosques seminaturales: una opción para la rehabilitación de bosques degradados. Chile, Austral, pp 89–114

    Google Scholar 

  • Peterson CJ, Carson WP, McCarthy BC, Pickett STA (1990) Microsite variation and soil dynamics within newly created treefall pits and mounds. Oikos 58:39–46

    Article  Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando

    Google Scholar 

  • Poulson TL, Platt WJ (1989) Gap light regimes influence canopy tree diversity. Ecology 70:553–555

    Article  Google Scholar 

  • R CORE TEAM (2015). A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Richards SA (2008) Dealing with overdispersed count data in applied ecology. J Appl Ecol 45:218–227

    Article  Google Scholar 

  • Richardson D, van Wilgen B (2004) Invasive alien plants in South Africa: how well do we understand the ecological impacts. S Afr J Sci 100:45–52

    Google Scholar 

  • Runkle JR (1982) Patterns of disturbance in some old-growth mesie forest of Eastern North America. Ecology 63:1533–1546

    Article  Google Scholar 

  • Smith CW (1985) Impacts of alien plants on Hawaii’s native biota. In: Stone CP, Scott JM (eds) Hawaii’s terrestrial ecosystems: preservation and management. University of Hawaii, Honolulu, Cooperative National Park Resource Studies Unit, pp 180–250

    Google Scholar 

  • Smith-Ramírez C, Arellano G, Hagen E, Vargas R, Castillo J, Miranda A (2013) El Rol de Turdus falcklandii (Aves: passeriforme) como dispersor de plantas invasoras en el archipiélago de Juan Fernández. Rev Chil Hist Nat 86:33–48

    Article  Google Scholar 

  • Soll J (1994) Controlling Himalayan Blackberry (Rubus armeniacus R. discolor, R. procerus) in the Pacific Northwest. Weed Science Society of America. 7th ed. Herbicide Handbook

  • Suding KN, Goldberg D (2001) Do disturbances alter competitive hierarchies? Mechanisms of change following gap creation. Ecology 82:2133–2149

    Article  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Vargas R, Cuevas JG, Le-Quesne C, Reif A, Bannister J (2010) Spatial distribution and regeneration strategies of the main forest species on Robinson Crusoe island. Rev Chil Hist Nat 83:349–363

    Article  Google Scholar 

  • Vargas R, Gärtner S, Alvarez M, Hagen E, Reif A (2013) Does restoration help the Conservation of the threatened forest of Robinson Crusoe Island? The impact of forest gap attributes on endemic plant species richness and exotic invasions. Biodivers Conserv 22:1283–1300

    Article  Google Scholar 

  • Veblen TT (1985) Forest development in tree-fall gaps in the temperature rain forests of Chile. Natl Geogr Res 1:162–183

    Google Scholar 

  • Ver Hoef JM, Boveng PL (2007) Quasi-poisson versus negative binomial regression: how should we model overdispersed count data. Ecology 88:2766–2772

    Article  PubMed  Google Scholar 

  • Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218

    Article  Google Scholar 

  • White PS (1979) Pattern, process, and natural disturbance in vegetation. Bot Rev 45:229–299

    Article  Google Scholar 

  • A consideration of gap partitioning concepts. Oikos 78:562–568

  • Yamamoto SI (1992) The gap theory in forest dynamics. Bot Mag Tokyo 105:375–383

    Article  Google Scholar 

  • Yamamoto SI (2000) Forest gap dynamics and tree regeneration. J For Res 5:223–229

    Article  Google Scholar 

  • Zuur AF, Mira A, Carvalho F, Ieno EN, Saveliev AA, Smith GM, Walker NJ (2009) Negative binomial GAM and GAMM to analyse amphibian roadkills. In: Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (eds) Mixed effects models and extensions in ecology with R. Springer Science Series, New York, pp 383–397

    Chapter  Google Scholar 

Download references

Acknowledgments

We are grateful to the island National Park Administrator, Mr. Iván Leiva, and all the forest rangers that supported us on all our field excursions. We are also grateful to Lisett Arellano, Andrés García, Rodrigo Molina, Gianfranco Moris, Diego Penneckamp, Alex Moeller, José Valencia, Rodrigo Vargas, and Juane Vera, Hector Gutierrez, and Juan Pablo Mora for their valuable cooperation in field work or assistance in lab. We give thanks to Marcela Bustamante and Jessica Castillo for their help in the statistical analysis, to Denise Fliegel and Lori Bell for helpful comments and critical review of the manuscript, to three anonymous reviewers, and to the editor of this journal. Thanks to UNESCO Grant and the IEB (Ecology and Biodiversity Institute) projects PFB-23 and ICM 05-002 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Smith-Ramírez.

Additional information

Communicated by Rebecca Ostertag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arellano-Cataldo, G., Smith-Ramírez, C. Establishment of invasive plant species in canopy gaps on Robinson Crusoe Island. Plant Ecol 217, 289–302 (2016). https://doi.org/10.1007/s11258-016-0570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0570-4

Keywords

Navigation