Plant Ecology

, Volume 215, Issue 10, pp 1173–1185 | Cite as

Phylogenetic structure of a palm community in the central Amazon: changes along a hydro-edaphic gradient

  • Cíntia Gomes de FreitasEmail author
  • Cristian de Sales Dambros
  • Wolf Lukas Eiserhardt
  • Flávia Regina Capellotto Costa
  • Jens-Christian Svenning
  • Henrik Balslev


The concepts of phylogenetic community structure (PCS) and phylogenetic niche conservatism (PNC) allow ecologists to address the role of species’ evolutionary history in community assembly. It is important to test the role of historical legacies relative to environmental constraints at local scales, where communities are assembled. We studied phylogenetic structure and niche conservatism for palms (Arecaceae) in the 64-km2 Ducke Reserve in the central Amazon, near Manaus. The 72 study plots, each covering 0.1 ha, were distributed regularly in a terra firme forest along a hydro-edaphic gradient. We compared the observed palm PCS with assemblages generated by null models. We also analyzed whether morphological and ecological traits are labile or conserved along the phylogeny and quantified the spatial structure of morphological traits in each plot. We found an overall neutral PCS in combination with low PNC (labile traits), suggesting that evolutionary history poses little constraint on palm community assembly in this Amazonian landscape. Still, there was a tendency towards phylogenetic overdispersion in bottomlands, suggesting competitive exclusion among close relatives or, more likely, environmental filtering acting on convergent traits that affect co-occurrence in flood-prone areas. We conclude that (1) PCS of local communities is random as a whole and morphological traits are overall labile, but that (2) the hydro-edaphic gradient within terra firme forests leads to differences in species co-occurrence so that closely related species occur less often than expected in bottomlands due to diffuse competition among close relatives or environmental filtering on convergent traits.


Community phylogenetic structure Competition Environmental filtering Limiting similarity Niche Null models 



We thank the Programa de Pesquisas em Biodiversidade (PPBio) and INPA for logistic support, the CNPq (575637/2008-0; 473474/2008-5) for financial support, and CAPES/PDEE for a doctoral scholarship to CGF. We also thank Jean Louis Guillaumet for the palm database. HB’s and JCS’s work on palms is supported by grants from the Danish Natural Science Research Council (10-083348; 10-083348; 12-125079) and from the European Commission (Contract No. 212631).

Supplementary material

11258_2014_376_MOESM1_ESM.pdf (51 kb)
Supplementary material 1 (PDF 52 kb)
11258_2014_376_MOESM2_ESM.pdf (65 kb)
Supplementary material 2 (PDF 65 kb)
11258_2014_376_MOESM3_ESM.pdf (81 kb)
Supplementary material 3 (PDF 82 kb)
11258_2014_376_MOESM4_ESM.pdf (50 kb)
Supplementary material 4 (PDF 51 kb)
11258_2014_376_MOESM5_ESM.pdf (51 kb)
Supplementary material 5 (PDF 51 kb)
11258_2014_376_MOESM6_ESM.pdf (45 kb)
Supplementary material 6 (PDF 45 kb)
11258_2014_376_MOESM7_ESM.pdf (102 kb)
Supplementary material 7 (PDF 103 kb)
11258_2014_376_MOESM8_ESM.pdf (416 kb)
Supplementary material 8 (PDF 417 kb)
11258_2014_376_MOESM9_ESM.pdf (92 kb)
Supplementary material 9 (PDF 92 kb)
11258_2014_376_MOESM10_ESM.pdf (122 kb)
Supplementary material 10 (PDF 123 kb)
11258_2014_376_MOESM11_ESM.pdf (46 kb)
Supplementary material 11 (PDF 46 kb)
11258_2014_376_MOESM12_ESM.pdf (88 kb)
Supplementary material 12 (PDF 88 kb)
11258_2014_376_MOESM13_ESM.pdf (75 kb)
Supplementary material 13 (PDF 75 kb)
11258_2014_376_MOESM14_ESM.pdf (53 kb)
Supplementary material 14 (PDF 53 kb)
11258_2014_376_MOESM15_ESM.pdf (66 kb)
Supplementary material 15 (PDF 66 kb)


  1. Baker WJ, Savolainen V, Asmussen-Lange CB, Chase MW, Dransfield J, Forest V, Harley MM, Uhl NW, Wilkinson M (2009) Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Syst Biol 58:240–256PubMedCrossRefGoogle Scholar
  2. Bell G (2001) Neutral macroecology. Science 293:2413–2418PubMedCrossRefGoogle Scholar
  3. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745PubMedCrossRefGoogle Scholar
  4. Bueno AS, Bruno RS, Pimentel TP, Sanaiotti TM, Magnusson WE (2012) The width of riparian habitats for understory birds in an Amazonian forest. Ecol Appl 22:722–734PubMedCrossRefGoogle Scholar
  5. Cahill JF, Kembel SW, Lamb EG, Keddy PA (2008) Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspect Plant Ecol Evol Syst 10:41–50CrossRefGoogle Scholar
  6. Castilho CV, Magnusson WE, Araújo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography. For Ecol Manag 234:85–96CrossRefGoogle Scholar
  7. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715PubMedCrossRefGoogle Scholar
  8. Costa FRC, Magnusson WE, Luizão RC (2005) Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. J Ecol 93:863–878CrossRefGoogle Scholar
  9. Costa FRC, Guillaumet JL, Lima AP, Pereira OS (2009) Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. J Veg Sci 20:69–78CrossRefGoogle Scholar
  10. Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11:48PubMedCrossRefPubMedCentralGoogle Scholar
  11. Couvreur TLP, Forest F, Baker WJ (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 9:44PubMedCrossRefPubMedCentralGoogle Scholar
  12. Crisp MD, Cook LG (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196:681–694PubMedCrossRefGoogle Scholar
  13. Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum. Kew Publishing, KewGoogle Scholar
  14. Drucker DP, Costa FRC, Magnusson WE (2008) How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. J Trop Ecol 24:65–74CrossRefGoogle Scholar
  15. Eiserhardt WL, Pintaud JC, Asmussen-Lange C, Hahn WJ, Bernal R, Balslev H, Borchsenius F (2011a) Phylogeny and divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences. Taxon 60(2):485–498Google Scholar
  16. Eiserhardt WL, Svenning JC, Kissling WD, Balslev H (2011b) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann Bot 108(8):1391–1416PubMedCrossRefPubMedCentralGoogle Scholar
  17. Eiserhardt WL, Svenning JC, Borchsenius F, Kristiansen T, Balslev H (2013) Separating environmental and geographical determinants of phylogenetic community structure in Amazonian palms (Arecaceae). Bot J Linn Soc 171:244–259CrossRefGoogle Scholar
  18. Fine PVA, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:552–565CrossRefGoogle Scholar
  19. Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665PubMedCrossRefGoogle Scholar
  20. Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162PubMedCrossRefGoogle Scholar
  21. Fortin MJ, Dale MRT, Hoef JV (2002) Spatial analysis in ecology. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 4. Wiley, Chichester, pp 2051–2058Google Scholar
  22. Freitas CG, Costa FRC, Svenning JC, Balslev H (2012) Topographic separation of two sympatric palms in the central Amazon—does dispersal play a role? Acta Oecol 39:128–135CrossRefGoogle Scholar
  23. Gotelli NJ, Entsminger GL (2003) Swap algorithms in null model analysis. Ecology 84:532–535CrossRefGoogle Scholar
  24. Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR (2007) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925PubMedCrossRefGoogle Scholar
  25. Henderson A (1995) The palms of the Amazon. Oxford University Press, New YorkGoogle Scholar
  26. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  27. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  28. Kahn F (1987) The distribution of palms as a function of local topography in Amazonian terra firme forests. Experientia 43:251–259CrossRefGoogle Scholar
  29. Kahn F, Castro A (1985) The palm community in a forest of Central Amazonia, Brazil. Biotropica 17:210–216CrossRefGoogle Scholar
  30. Kahn F, Granville JJ (1992) Palms in forest ecosystems of Amazonia. Ecological studies, vol 95. Springer, Berlin, pp 1–223Google Scholar
  31. Kembel SW (2009) Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960PubMedCrossRefGoogle Scholar
  32. Kembel SW, Hubbell SP (2006) The phylogenetic structure of a Neotropical forest tree community. Ecology 87:S86–S99PubMedCrossRefGoogle Scholar
  33. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464PubMedCrossRefGoogle Scholar
  34. Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283PubMedCrossRefGoogle Scholar
  35. Kristiansen T, Svenning JC, Eiserhardt WL, Pedersen D, Brix H, Kristiansen SM, Knadel M, Grández C, Balslev H (2012) Environment versus dispersal in the assembly of western Amazonian palm communities. J Biogeogr 39:1318–1332CrossRefGoogle Scholar
  36. Landeiro VL, Magnusson WE, Melo AS, Espírito-Santo HMV, Bini LM (2011) Spatial eigenfunction analyses in stream networks: Do watercourse and overland distances produce different results? Freshw Biol 56:1184–1192CrossRefGoogle Scholar
  37. Losos J (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007PubMedCrossRefGoogle Scholar
  38. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093PubMedCrossRefGoogle Scholar
  39. Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Waterloo M, Saleska S (2011) Height above the nearest drainage—a hydrologically relevant new terrain model. J Hydrol 404:13–29CrossRefGoogle Scholar
  40. Pianka ER (1974) Niche overlap and diffuse competition. PNAS 71:2141–2145PubMedCrossRefPubMedCentralGoogle Scholar
  41. Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440CrossRefGoogle Scholar
  42. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical computing, Vienna. ISBN 3-900051-07-0.
  43. Rabosky DL, Reid J, Cowan MA, Foulkes J (2007) Overdispersion of body size in Australian desert lizard communities at local scales only: No evidence for the Narcissus effect. Oecologia 154:561–570PubMedCrossRefGoogle Scholar
  44. Rennó CD, Nobre AD, Cuartas LA, Soares JV, Hodnett MG, Tomasella J (2008) HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens Environ 112:3469–3481CrossRefGoogle Scholar
  45. Ribeiro JELS, Hopkins MJG, Vicentini A, Sothers CA, Costa MAS, Brito JM, Souza MAD, Martins LHP, Lohmann LG, Assunção PACL, Pereira EC, Silva CF, Mesquita MR, Procópio LC (1999) Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia central. Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  46. Roncal J, Blach-Overgaard A, Borchsenius F, Balslev H, Svenning JC (2011) A dated phylogeny complements macroecological analysis to explain the diversity patterns in Geonoma (Arecaceae). Biotropica 43:324–334CrossRefGoogle Scholar
  47. Roncal J, Henderson A, Borchsenius F, Cardoso SRS, Balslev H (2012) Can phylogenetic signal, character displacement, or random phenotypic drift explain the morphological variation in the genus Geonoma (Arecaceae)? Biol J Linn Soc 106:528–539CrossRefGoogle Scholar
  48. Roncal J, Kahn F, Millan B, Couvreur TLP, Pintaud JC (2013) Cenozoic colonization and diversification patterns of tropical American palms: evidence from Astrocaryum (Arecaceae). Bot J Linn Soc 171:120–139CrossRefGoogle Scholar
  49. Rosindell J, Hubbell SP, He F, Harmon LJ, Etienne RS (2012) The case for ecological neutral theory. TREE 27(4):203–208PubMedGoogle Scholar
  50. Schietti J, Emilio T, Rennó CD, Drucker DP, Costa FRC, Nogueira A, Baccaro FB, Figueiredo F, Castilho CV, Kinupp V, Guillaumet JL, Garcia ARM, Lima A, Magnusson WE (2014) Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol Div 7:1–13Google Scholar
  51. Silvertown J, Dodd M, Gowing D, Lawson C, McConway K (2006) Phylogeny and the hierarchical organization of plant diversity. Ecology 87:S39–S49PubMedCrossRefGoogle Scholar
  52. Svenning JC (2001) On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot Rev 66:1–53CrossRefGoogle Scholar
  53. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 34:271–317CrossRefGoogle Scholar
  54. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16CrossRefGoogle Scholar
  55. Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244PubMedCrossRefGoogle Scholar
  56. Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol Lett 14:782–787PubMedCrossRefGoogle Scholar
  57. Vormisto J, Tuomisto H, Oksanen J (2004) Palm distribution patterns in Amazonian rainforests: What is the role of topographic variation? J Veg Sci 15:485–494CrossRefGoogle Scholar
  58. Webb C (2000) Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am Nat 156:145–155PubMedCrossRefGoogle Scholar
  59. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cíntia Gomes de Freitas
    • 1
    Email author
  • Cristian de Sales Dambros
    • 2
  • Wolf Lukas Eiserhardt
    • 3
  • Flávia Regina Capellotto Costa
    • 1
  • Jens-Christian Svenning
    • 3
  • Henrik Balslev
    • 3
  1. 1.Instituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.Department of BiologyUniversity of VermontBurlingtonUSA
  3. 3.Ecoinformatics and Biodiversity Group, Department of BioscienceAarhus UniversityAarhus CDenmark

Personalised recommendations