Skip to main content
Log in

Plant traits co-vary with altitude in grasslands and forests in the European Alps

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Biological traits that are advantageous under specific ecological conditions should be present in a large proportion of the species within an ecosystem, where those specific conditions prevail. As climatic conditions change, the frequency of certain traits in plant communities is expected to change with increasing altitude. We examined patterns of change for 13 traits in 120 exhaustive inventories of plants along five altitudinal transects (520–3,100 m a.s.l.) in grasslands and in forests in western Switzerland. The traits selected for study represented the occupation of space, photosynthesis, reproduction and dispersal. For each plot, the mean trait values or the proportions of the trait states were weighted by species cover and examined in relation to the first axis of a PCA based on local climatic conditions. With increasing altitude in grasslands, we observed a decrease in anemophily and an increase in entomophily complemented by possible selfing; a decrease in diaspores with appendages adapted to ectozoochory, linked to a decrease in achenes and an increase in capsules. In lowlands, pollination and dispersal are ensured by wind and animals. However, with increasing altitude, insects are mostly responsible for pollination, and wind becomes the main natural dispersal vector. Some traits showed a particularly marked change in the alpine belt (e.g. the increase of capsules and the decrease of achenes), confirming that this belt concentrates particularly stressful conditions to plant growth and reproduction (e.g. cold, short growing season) that constrain plants to a limited number of strategies. One adaptation to this stress is to limit investment in dispersal by producing capsules with numerous, tiny seeds that have appendages limited to narrow wings. Forests displayed many of the trends observed in grasslands but with a reduced variability that is likely due to a shorter altitudinal gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora Alpina. Belin, Paris

    Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman & Hall, London

    Google Scholar 

  • Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of Central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  • Austrheim G, Evju M, Mysterud A (2005) Herb abundance and life-history traits in two contrasting alpine habitats in southern Norway. Plant Ecol 179:217–229

    Article  Google Scholar 

  • Baker HG (1972) Seed weight in relation to environmental conditions in California. Ecology 53:997–1010

    Article  Google Scholar 

  • Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goni MF, Spessa A, Davis B, Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. J Veg Sci 15:635–646

    Article  Google Scholar 

  • Bates D, Maechler M, Dai B (2007) lme4: linear mixed-effects models using S4 classes. Version 0.999375-28. http://cran.r-project.org

  • Berry PE, Calvo RN (1989) Wind pollination, self-incompatibility, and altitudinal shifts in pollination systems in the High Andean genus Espeletia Asteraceae. Am J Bot 76:1602–1614

    Article  Google Scholar 

  • Billings WD (1974) Adaptations and origins of alpine plants. Arct Alp Res 6:129–142

    Article  Google Scholar 

  • Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature 391:238–239

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Quelle and Meyer UTB, Wiesbaden

    Google Scholar 

  • Burghardt M, Riederer M (2003) Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. J Exp Bot 54:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Cerabolini B, Ceriani RM, Caccianiga M, Andreis RD, Raimondi B (2003) Seed size, shape and persistence in soil: a test on Italian flora from Alps to Mediterranean coasts. Seed Sci Res 13:75–85

    Article  Google Scholar 

  • Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek PM (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113:188–196

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Cornwell WK, Bhaskar R, Sack L, Cordell S, Lunch CK (2007) Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct Ecol 21:1063–1071

    Article  Google Scholar 

  • Cox PA, Grubb PJ (1991) Abiotic pollination: an evolutionary escape for animal-pollinated angiosperms. Philos Trans R Soc Lond B Biol Sci 333:217–224

    Article  Google Scholar 

  • Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369

    Article  Google Scholar 

  • de Bie S, Ketner P, Paasse M, Geerling C (1998) Woody plant phenology in the West Africa savanna. J Biogeogr 25:883–900

    Article  Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Díaz BMC, Zunzunegui M, Tirado R, Ain-Lhout F, Novo FG (1999) Plant functional types and ecosystem function in Mediterranean shrubland. J Veg Sci 10:709–716

    Article  Google Scholar 

  • Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora 199:70–81

    Google Scholar 

  • Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222

    Article  Google Scholar 

  • Fisher JB, Goldstein G, Jones TJ, Cordell S (2007) Wood vessel diameter is related to elevation and genotype in the Hawaiian tree Metrosideros polymorpha Myrtaceae. Am J Bot 94:709–715

    Article  Google Scholar 

  • Flynn S, Turner RM, Stuppy WH (2006) Seed information database release 7.0, October 2006. http://www.kew.org/data/sid

  • Geeske J, Aplet G, Vitousek PM (1994) Leaf morphology along environmental gradients in Hawaiian Metrosideros polymorpha. Biotropica 26:17–22

    Article  Google Scholar 

  • Goodwillie C (1999) Wind pollination and reproductive assurance in Linanthus parviflorus Polemoniaceae, a self-incompatible annual. Am J Bot 86:948–954

    Article  PubMed  Google Scholar 

  • Guisan A, Zimmermann N (2000) Predictive habitat distribution model in ecology. Ecol Mod 135:147–186

    Article  Google Scholar 

  • Halloy SRP, Mark AF (1996) Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. J R Soc New Zeal 26:41–78

    Article  Google Scholar 

  • Herben T, Krahulec F, Hadincova V, Kovarova M (1993) Small-scale spatial dynamics of plant-species in a grassland community over 6 years. J Veg Sci 4:171–178

    Article  Google Scholar 

  • Illa E, Carrillo E, Ninot JM (2006) Patterns of plant traits in Pyrenean alpine vegetation. Flora 201:528–546

    Google Scholar 

  • Janzen DH (1984) Dispersal of small seeds by big herbivores: foliage is the fruit. Am Nat 123:338–353

    Article  Google Scholar 

  • Klotz S, Ingolf K, Durka W (2002) BIOLFOR—Eine Datenbank mit biologisch-ökologishen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde 38, Bundesamt für Naturschutz, Bonn

  • Knevel IC, Bekker RM, Bakker JP, Klyer M (2003) Life-history traits of the Northwest European flora: the LEDA database. J Veg Sci 14:611–614

    Article  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182:353–383

    Google Scholar 

  • Kromer T, Kessler M, Gradstein SR (2007) Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol 189:261–278

    Article  Google Scholar 

  • Kühn I, Bierman SM, Durka W, Klotz S (2006) Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytol 172:127–139

    Article  PubMed  Google Scholar 

  • Landolt E (1967) Gebirgs- und Tieflandsippen von Blütenpflanzen im Bereich der Schweizer Alpen. Bot Jahrb 86:463–480

    Google Scholar 

  • Lindacher R, Böcker R, Bemmerlein-Lux FA, Kleemann A, Haas S, Sukopp H (1995) PHANART. Datenbank des Gefässpflanzen Mitteleuropas. Erklärung der Kennzahlen, Aufbau und Inhalt. Veröff Geobot Inst ETH Stiftung Rübel Zürich 125:1–436

    Google Scholar 

  • Lindgren A, Eriksson O, Moen J (2007) The impact of disturbance and seed availability on germination of alpine vegetation in the Scandinavian Mountains. Arct Alp Res 39:449–454

    Article  Google Scholar 

  • Mitchell P, Veneklaas E, Lambers H, Burgess S (2008) Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia 158:385–397

    Article  PubMed  Google Scholar 

  • Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105

    Article  Google Scholar 

  • Moles AT, Ackerly DD, Tweddle JC, Dickie JB, Smith R, Leishman MR, Mayfield MM, Pitman A, Wood JT, Westoby M (2007) Global patterns in seed size. Global Ecol Biogeogr 16:109–116

    Article  Google Scholar 

  • Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröff Geobot Inst ETH Stiftung Rübel Zürich 85:1–263

    Google Scholar 

  • Otto H-J (1998) Ecologie forestière. Institut pour le développement forestier, Paris

    Google Scholar 

  • Ozinga WA, Bekker RM, Schaminée JHJ, van Groenendael JM (2004) Dispersal potential in plant communities depends on environmental conditions. J Ecol 92:767–777

    Article  Google Scholar 

  • Pakeman RJ, Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Kigel J, Kleyer M, Lepš J, Meier T, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Rusch G, Sternberg M, Theau JP, Thébault A, Vile D (2008) Impact of abundance weighting on the response of seed traits to climate and land use. J Ecol 96:355–366

    Article  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107

    Article  Google Scholar 

  • Pavon NP, Hernandez-Trejo H, Rico-Gray V (2000) Distribution of plant life forms along an altitudinal gradient in the semi-arid valley of Zapotitlan, Mexico. J Veg Sci 11:39–42

    Article  Google Scholar 

  • Pellissier L, Pottier J, Vittoz P, Dubuis A, Guisan A (2010). Spatial pattern of floral morphology: an insight into the effects of pollinators on plant distributions? Oikos. doi:10.1111/j.1600-0706.2010.18560.x

  • Pignatti S (2005) Valory di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39:1–97

    Google Scholar 

  • Pluess AR, Schütz W, Stöcklin J (2005) Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species. Oecologia 144:55–61

    Article  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Römermann C, Tackenberg O, Poschlod P (2005) How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110:219–230

    Article  Google Scholar 

  • Sevruk B (1997) Regional dependency of precipitation-altitude relationship in the Swiss Alps. Clim Chang 36:355–369

    Article  Google Scholar 

  • Stöcklin J (1999) Differences in life history traits of related Epilobium species: clonality, seed size and seed number. Folia Geobot 34:7–18

    Article  Google Scholar 

  • Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56

    Article  Google Scholar 

  • Tackenberg O (2001) Methoden zur Bewertung gradueller Unterschiede des Ausbreitungspotentials von Pflanzenarten. PhD Thesis, Philipps-Universität Marburg, Marburg/Lahn

  • Tackenberg O, Stöcklin J (2008) Wind dispersal of alpine plant species: a comparison with lowland species. J Veg Sci 19:109–118

    Article  Google Scholar 

  • Theurillat J-P, Schlüssel A, Geissler P, Guisan A, Velluti C, Wiget L (2003) Vascular plant and bryophyte diversity along elevation gradients in the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological studies 167. Springer Verlag, Heidelberg, pp 185–193

    Google Scholar 

  • Tormo Molina R, Silva Palacios I, Munoz Rodriguez AF, Tavira Munoz J, Moreno Corchero A (2001) Environmental factors affecting airborne pollen concentration in anemophilous species of Plantago. Ann Bot 87:1–8

    Article  Google Scholar 

  • Vittoz P, Engler R (2007) Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helv 117:109–124

    Article  Google Scholar 

  • Vittoz P, Guisan A (2007) How reliable is the monitoring of permanent vegetation plots? A test with multiple observers. J Veg Sci 18:413–422

    Article  Google Scholar 

  • Vittoz P, Dussex N, Wassef J, Guisan A (2009) Plant traits discriminate good from weak colonisers on high elevation summits. Basic Appl Ecol 10:508–515

    Article  Google Scholar 

  • Vogler P (1901) Über die Verbreitungsmittel der schweizerischen Alpenpflanzen. Flora oder Allgem Bot Zeit 89:1–137

    Google Scholar 

  • Weiher E, Keddy P (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Weppler T, Stoll P, Stöcklin J (2006) The relative importance of sexual and clonal reproduction for population growth in the long-lived alpine plant Geum reptans. J Ecol 94:869–879

    Article  Google Scholar 

  • Whitehead DR (1969) Wind pollination in the angiosperms: evolutionary and environmental considerations. Evolution 23:28–35

    Article  Google Scholar 

  • Willson MF, Rice BL, Westoby M (1990) Seed dispersal spectra: a comparison of temperate plant communities. J Veg Sci 1:547–562

    Article  Google Scholar 

  • Zhu Y, Jiang Y, Liu Q, Kang M, Spehn EM, Körner Ch (2009) Elevational trends of biodiversity and plant traits do not converge—a test in the Helan Range, NW China. Plant Ecol 205:273–283

    Article  Google Scholar 

  • Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Federal Office for the Environment FOEN (Switzerland), Centre de conservation de la faune et de la nature (Canton de Vaud), Fondation Audemars Piguet, the European Commission (ECOCHANGE and MACIS FP6-projects) and NSF grant Nr. 31003A-125145 (BIOASSEMBLE project). We are grateful to S. Jutzeler, S. Maire and F. Dessimoz for assistance with field work, to J. Goudet and J. Dwyer for their advice in statistical analysis and to G. Besnard and two anonymous reviewers for their useful comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Vittoz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellissier, L., Fournier, B., Guisan, A. et al. Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecol 211, 351–365 (2010). https://doi.org/10.1007/s11258-010-9794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9794-x

Keywords

Navigation