Skip to main content
Log in

Variations in the foliar nutrient content of mire plants: effects of growth-form based grouping and habitat

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We determined concentrations of major nutrients in the vegetation of six habitat types (hummock, scrub, lawn, fen meadow, hollow and marginal stream), spanning a broad range of environmental conditions as regards water-table depth and water chemistry, in five mires on the southern Alps of Italy. Our study was based on chemical analyses of living tissues of plant species, grouped into growth-form based plant functional types (PFTs). We aimed at assessing to what extent the observed differences in tissue nutrient content were accounted for by community composition (both in terms of species and PFTs) and by habitat. Nutrient concentrations were overall lowest in Sphagnum mosses and highest in forbs, although the latter showed large variations presumably due to heterogeneity in mechanisms and adaptations for acquiring nutrients among species within this PFT. Nutrient content patterns in the other three PFTs varied greatly in relation to individual nutrients, with evergreen shrubs showing low nitrogen (N) concentrations, graminoids showing high N concentrations but low potassium (K) and magnesium (Mg) concentrations and deciduous shrubs showing rather high phosphorus (P) concentrations. Habitat accounted for a modest fraction of variation in tissue concentration of all nutrients except P. We concluded that the nutrient status of mire vegetation is primarily controlled by community composition and structure although habitat does exert a direct control on P concentration in the vegetation, presumably through P availability for plant uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:502–507. doi:10.1016/S0169-5347(00)89156-9

    Article  Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. doi:10.1016/S0065-2504(08)60016-1

    Article  CAS  Google Scholar 

  • Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC (2009) Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Funct Ecol 23:680–688. doi:10.1111/j.1365-2435.2009.01566.x

    Article  Google Scholar 

  • Berntson GM (1997) Topological scaling and plant root system architecture: developmental and functional hierarchies. New Phytol 135:621–634. doi:10.1046/j.1469-8137.1997.00687.x

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Bragazza L, Gerdol R (1996) Response surfaces of plant species along water-table depth and pH gradients in a poor mire on the southern Alps (Italy). Ann Bot Fenn 33:11–20

    Google Scholar 

  • Bragazza L, Gerdol R (1999) Ecological gradients in some Sphagnum mires in the southern Alps (Italy). Appl Veg Sci 2:55–60. doi:10.2307/1478881

    Article  Google Scholar 

  • Brancaleoni L, Gualmini M, Tomaselli M, Gerdol R (2007) Responses of subalpine dwarf-shrub heath to irrigation and fertilization. J Veg Sci 18:337–344. doi:10.1658/1100-9233

    Article  Google Scholar 

  • Bubier JL, Moore TR, Crosby G (2006) Fine-scale vegetation distribution in a cool temperate peatland. Can J Bot 84:910–923. doi:10.1139/B06-044

    Article  Google Scholar 

  • Clarkson BR, Schipper LA, Moyersoen B, Warwick B, Silvester WB (2005) Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia 144:550–557. doi:10.1007/s00442-005-0033-4

    Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114. doi:10.1111/j.1469-8137.1997.tb04385.x

    Article  Google Scholar 

  • Cornelissen JHC, Werger MJA, Castro Diez P, Van Rheenen JWA, Rowland AP (1997) Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111:460–469. doi:10.1007/s004420050259

    Article  Google Scholar 

  • Cripps CL, Eddington LH (2005) Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, USA, in reference to large-scale patterns in arctic-alpine habitats. Arct Antarct Alp Res 37:177–188. doi:10.1657/1523-0430(2005)037[0177:DOMTAA]2.0.CO;2

    Article  Google Scholar 

  • de Mars H, Wassen MJ (1999) Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecol 140:41–51. doi:10.1023/A:1009733113927

    Article  Google Scholar 

  • Demars BOL, Edwards AC (2008) Tissue nutrient concentrations in aquatic macrophytes: comparison across biophysical zones, surface water habitats and plant life forms. Chem Ecol 24:413–422. doi:10.1080/02757540802534533

    Article  CAS  Google Scholar 

  • Dickinson KJM, Chagué-Goff C, Mark AF, Cullen L (2002) Ecological processes and trophic status of two low-alpine patterned mires, south-central South Island, New Zealand. Austral Ecol 27:369–384. doi:10.1111/j.1442-9993.2002.tb00185.x

    Article  Google Scholar 

  • Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–1180. doi:10.1111/j.1365-2745.2007.01294.x

    Article  Google Scholar 

  • Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828. doi:10.1111/j.1365-2745.2005.01024.x

    Article  Google Scholar 

  • Eckstein RL, Karlsson PS (1997) Above-ground growth and nutrient use by plants in a subarctic environment: effects of habitat, life-form and species. Oikos 79:311–324. doi:10.2307/3546015

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.1007/BF00377192

    Article  Google Scholar 

  • Eviner VT (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215–2229. doi:10.1890/03-0405

    Article  Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Syst 34:455–485. doi:10.1146/annurev.ecolsys.34.011802.132342

    Article  Google Scholar 

  • Falinska K (1997) Life history variation in Cirsium palustre and its consequences for the population demography in vegetation succession. Acta Soc Bot Pol 66:207–220

    Google Scholar 

  • George E, Haussler KU, Vetterlein D, Gorgus E, Marschner H (1995) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137. doi:10.1139/b92-265

    Article  Google Scholar 

  • Gerdol R (2000) Water- and nutrient-use efficiency of a deciduous species, Vaccinium myrtillus, and an evergreen species, V. vitis-idaea, in a subalpine dwarf shrub heath in the southern, Alps, Italy. Oikos 88:19–32. doi:10.1034/j.1600-0706.2000.880104.x

    Article  Google Scholar 

  • Gitay H, Noble IR (1997) What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, UK, pp 3–19

    Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison A, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281. doi:10.2307/3546011

    Article  Google Scholar 

  • Güsewell S, Koerselman W (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol Evol Syst 5:37–61. doi:10.1078/1433-8319-0000022

    Article  Google Scholar 

  • Hewett DG (1964) Menyanthes trifoliata L. biological flora of the British Isles. J Ecol 52:723–735

    Article  Google Scholar 

  • Hidaka A, Kitayama K (2009) Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. J Ecol 97:984–991. doi:10.1111/j.1365-2745.2009.01540.x

    Article  CAS  Google Scholar 

  • Hinsinger P, Glyn Bengough A, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi:10.1007/s11104-008-9885-9

    Article  CAS  Google Scholar 

  • Hobbie SE, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462. doi:10.1007/s00442-002-0892-x

    Article  Google Scholar 

  • Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294. doi:10.2307/3546494

    Article  Google Scholar 

  • Humphreys ER, Lafleur PM, Flanagan LB, Hedstrom N, Syed KH, Glenn AJ, Granger R (2006) Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. J Geophys Res 111:G04011. doi:10.1029/2005JG000111

    Article  Google Scholar 

  • Jaeger CH, Monson RK (1992) Adaptive significance of nitrogen storage in Bistorta bistortoides, an alpine herb. Oecologia 92:578–585. doi:10.1007/BF00317852

    Article  Google Scholar 

  • Johnson JB, Steingraeber DA (2003) The vegetation and ecological gradients of calcareous mires in the South Park valley, Colorado. Can J Bot 81:201–219. doi:10.1139/b03-017

    Article  Google Scholar 

  • Kleijn D, Treier UA, Müller-Schärer H (2005) The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album. New Phytol 166:565–575. doi:10.1111/j.1469-8137.2005.01321.x

    Article  CAS  PubMed  Google Scholar 

  • Kleinebecker T, Hölzel N, Vogel A (2008) South Patagonian ombrotrophic bog vegetation reflects biogeochemical gradients at the landscape level. J Veg Sci 19:151–160. doi:10.3170/2008-8-18370

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J App Ecol 33:1441–1450. doi:10.2307/2404783

    Article  Google Scholar 

  • Kytoviita MM, Ruotsalainen AD (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315. doi:10.3732/ajb.94.8.1309

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi:10.1046/j.1365-2435.2002.00664.x

    Article  Google Scholar 

  • Litaor MI, Seastedt TR, Walker MD, Carbone M, Townsend A (2005) The biogeochemistry of phosphorus across an alpine topographic/snow gradient. Geoderma 124:49–61. doi:10.1016/j.geoderma.2004.04.001

    Article  CAS  Google Scholar 

  • Malmer N, Wallén B (2005) Nitrogen and phosphorus in mire plants: variation during 50 years in relation to supply rate and vegetation type. Oikos 109:539–554. doi:10.1111/j.0030-1299.2001.13835.x

    Article  Google Scholar 

  • Marini L, Nascimbene J, Scotton M, Klimek S (2008) Hydrochemistry, water table depth and related distribution patterns of vascular plants in a mixed mire. Plant Biosyst 142:79–86. doi:10.1080/11263500701872507

    Google Scholar 

  • Millett J, Jones RI, Waldron S (2003) The contribution of insect prey to the total nitrogen content of sundews (Drosera spp.) determined in situ by stable isotope analysis. New Phytol 158:527–534. doi:10.1046/j.1469-8137.2003.00763.x

    Article  Google Scholar 

  • Nakamura T, Uemura S, Yabe K (2002) Variation in nitrogen-use traits within and between five Carex species growing in the lowland mires of northern Japan. Funct Ecol 16:67–72. doi:10.1046/j.0269-8463.2001.00593.x

    Article  Google Scholar 

  • Nakayama T (2008) Factors controlling vegetational succession in Kushiro Mire. Ecol Model 215:225–236. doi:10.1016/j.ecolmodel.2008.02.017

    Article  Google Scholar 

  • Nekola JC (2004) Vascular plant compositional gradients within and between Iowa fens. J Veg Sci 15:771–780. doi:10.1658/1100-9233

    Google Scholar 

  • Ohlson M (1988) Variation in tissue element concentration in mire plants over a range of sites. Holarct Ecol 11:267–279. doi:10.1111/j.1600-0587.1988.tb00809.x

    Google Scholar 

  • Økland R (1989) A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. I. Introduction, flora, vegetation and ecological conditions. Sommerfeltia 8:1–172

    Google Scholar 

  • Økland R (1990) A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. II. Identification of gradients by detrended (canonical) correspondence analysis. Nord J Bot 10:191–220. doi:10.1111/j.1756-1051.1990.tb01766.x

    Article  Google Scholar 

  • Pellerin S, Lagneau LA, Lavoie M, Larocque M (2009) Environmental factors explaining the vegetation patterns in a temperate peatland. Comptes Rendus Biologies 332:720–731. doi:10.1016/j.crvi.2009.04.003

    Article  PubMed  Google Scholar 

  • Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecol 196:111–121. doi:10.1007/s11258-007-9338-1

    Article  Google Scholar 

  • Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13:448–459. doi:10.1111/j.1526-100X.2005.00056.x

    Article  Google Scholar 

  • Proctor MCF, McHaffie HS, Legg CJ, Amphlett A (2009) Evidence from water chemistry as a criterion of ombrotrophy in the mire complexes of Abernethy Forest, Scotland. J Veg Sci 20:160–169. doi:10.1111/j.1654-1103.2009.05643.x

    Article  Google Scholar 

  • Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221. doi:10.1890/02-0426

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1998) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci 94:13730–13734. doi:10.1073/pnas.94.25.13730

    Article  Google Scholar 

  • Rozbrojová Z, Hajek M (2008) Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. J Veg Sci 19:613–620. doi:10.3170/2008-8-18416

    Article  Google Scholar 

  • Sjörs H (1952) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241–258. doi:10.2307/3564795

    Article  Google Scholar 

  • Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233. doi:10.1139/b72-289

    Article  CAS  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (version 4.5). Microcomputer Power. Ithaca, NY, US

    Google Scholar 

  • Titus JH, Leps J (2000) The response of arbuscular mycorrhizae to fertilization, mowing, and removal of dominant species in a diverse oligotrophic wet meadow. Am J Bot 87:392–401. doi:10.2307/2656635

    Article  PubMed  Google Scholar 

  • Vitt DH, Chee WL (1990) The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106. doi:10.1007/BF00032163

    Article  Google Scholar 

  • Voigt W, Perner J, Jones H (2007) Using functional groups to investigate community response to environmental changes: two grassland case studies. Glob Change Biol 13:1710–1721. doi:10.1111/j.1365-2486.2007.01398.x

    Article  Google Scholar 

  • Wahren CHA, Walker MD, Bret-Harte MS (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Change Biol 11:537–552. doi:10.1111/j.1365-2486.2005.0092.x

    Article  Google Scholar 

  • Wallén B (1987) Growth pattern and distribution of biomass of Calluna vulgaris (L.) Hull on an ombrotrophic peat-bog. Holarct Ecol 10:73–79. doi:10.1111/j.1600-0587.1987.tb00741.x

    Google Scholar 

  • Welker JM, Fahnestock JT, Sullivan PF, Chimner RA (2005) Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska. Oikos 109:167–177. doi:10.1111/j.0030-1299.2005.13264.x

    Article  Google Scholar 

  • Welp LR, Randerson JT, Liu HP (2007) The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric Forest Meteorol 147:172–185. doi:10.1016/j.agrformet.2007.07.010

    Article  Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439. doi:10.1111/j.1469-8137.2008.02488.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by a grant of the Fondazione Cassa di Risparmio di Verona, Vicenza, Belluno e Ancona to R. Gerdol (Project RITA). We thank Mr. D. Berton and Dr. R. Marchesini for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Gerdol.

Appendix

Appendix

See Table 4.

Table 4 Mean (±1 SE) values of nutrient concentrations (as mg g−1) and N:P ratio in all species occurring at the six habitats (sample numbers in parentheses)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bombonato, L., Siffi, C. & Gerdol, R. Variations in the foliar nutrient content of mire plants: effects of growth-form based grouping and habitat. Plant Ecol 211, 235–251 (2010). https://doi.org/10.1007/s11258-010-9786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9786-x

Keywords

Navigation