Skip to main content

Advertisement

Log in

The Iberian Peninsula as a potential source for the plant species pool in Germany under projected climate change

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The application of niche-based modelling techniques to plant species has not been explored for the majority of taxa in Europe, primarily due to the lack of adequate distributional data. However, it is of crucial importance for conservation adaptation decisions to assess and quantify the likely pool of species capable of colonising a particular region under altered future climate conditions. We here present a novel method that combines the species pool concept and information about shifts in analogous multidimensional climate space. This allows us to identify regions in Europe with a current climate which is similar to that projected for future time periods in Germany. We compared the extent and spatial location of climatically analogous European regions for three projected greenhouse gas emission scenarios in Germany for the time period 2071–2080 (+2.4°C, +3.3°C, +4.5°C average increase in mean annual temperature) to those of the recent past in Europe (1961–90). Across all three scenarios, European land areas which are characterised by climatic conditions analogue to those found in Germany decreased from 14% in 1961–1990 to ca. 10% in 2071–2080. All scenarios show disappearing current climate types in Germany, which can mainly be explained with a general northwards shift of climatically analogous regions. We estimated the size of the potential species pool of these analogous regions using floristic inventory data for the Iberian Peninsula as 2,354 plant species. The identified species pool in Germany indicates a change towards warmth and drought adapted southern species. About one-third of the species from the Iberian analogous regions are currently already present in Germany. Depending on the scenario used, 1,372 (+2.4°C average change of mean annual temperature), 1,399 (+3.3°C) and 1,444 (+4.5°C) species currently not found in Germany, occur in Iberian regions which are climatically analogous to German 2071–80 climate types. We believe that our study presents a useful approach to illustrate and quantify the potential size and spatial distribution of a pool of species potentially colonising new areas under changing climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Badeck F, Pompe S, Kühn I, Glauer A (2008) Wetterextreme und Artenvielfalt, Zeitlich hochauflösende Klimainformationen auf dem Messtischblattraster und für Schutzgebiete in Deutschland. Naturschutz und Landschaftsplanung 40:343–345

    Google Scholar 

  • Bunce RGH, Carey PD, Elena-Rosello R, Orr J, Watkins J, Fuller R (2002) A comparison of different biogeographical classifications of Europe, Great Britain and Spain. J Environ Manag 65:121–134

    Article  CAS  Google Scholar 

  • Castroviejo S, Lainz M, Lopez Gonzales G, Montserrat P, Munoz Garmendia F, Paiva J, Villar I (eds) (1986–2006) Flora Iberica, vols. 1–14. Real Jardin Botanico C.S.I.C., Madrid

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quarternary climate change. Science 292:673–679

    Article  PubMed  CAS  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1–248, Verlag Erich Goltze, Göttingen

    Google Scholar 

  • Finch J, Samways M, Hill T, Piper S, Taylor S (2006) Application of predictive distribution modelling to invertebrates: Odonata in South Africa. Biodivers Conserv 15(13):4239–4251

    Article  Google Scholar 

  • Fovell RG (1997) Consensus clustering of US temperate and precipitation data. J Climate 10:1405–1427

    Article  Google Scholar 

  • Haase D, Fink J, Haase G, Ruske R, Pècsi M, Richter H, Altermann M, Jäger KD (2007) Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2, 500, 000. Quat Sci Rev 26(9–10):1301–1312

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distribution of a wide range of taxonomic troups are expanding polewards. Glob Change Biol 12:450–455

    Article  Google Scholar 

  • Higgins SI, Lavorel S, Revilla E (2003) Estimating plant migration rates under habitat loss and fragmentation. Oikos 101:354–366

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  PubMed  Google Scholar 

  • Huntley B (1991) How plants respond to climate change: migration rates, individualism and the consequences for plant communities. Ann Bot 67:15–22

    Google Scholar 

  • Huntley B, Green RE, Collingham YC, Hill JK, Willis SG, Bartlein PJ, Cramer W, Hagemeijer WJM, Thomas CJ (2004) The performance of models relating species geographical distributions to climate is independent of trophic level. Ecol Lett 7(5):417–426

    Article  Google Scholar 

  • Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Lynx Edicions, Rockville Center, New York

    Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

  • Jalas J, Suominen J (eds) (1972–1994) Atlas Florae Europaeae. Distribution of vascular plants in Europe. vols 1–10. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki

  • Jalas J, Suominen J, Lampinen R (eds) (1996) Atlas Florae Europaeae. Distribution of vascular plants in Europe, vol 11. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki

    Google Scholar 

  • Jalas J, Suominen J, Lampinen R, Kurtto A (eds) (1999) Atlas Florae Europaeae. Distribution of vascular plants in Europe. vol 12. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki

    Google Scholar 

  • Kurtto A, Lampinen R, Junikka L (eds) (2004) Atlas Florae Europaeae. Distribution of vascular plants in Europe. Vol 13. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86(8):2088–2098

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW (2005) A climate stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Leemans R, Viner D (2008) Projected environmental shifts under climate change: European trends and regional impacts. Environ Conserv 35:64–75

    Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Working Paper 55. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Nix HA (1986) A biogeographic analysis of Australian elapid snakes. In: Longmore R (ed) Atlas of Elapid snakes of Australia. Aust Flora Fauna Ser 7:4–15

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006a) Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Glob Ecol Biogeogr 15:395–405

    Article  Google Scholar 

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006b) Quantifying components of risk for European woody species under climate change. Glob Change Biol 12:1788–1799

    Article  Google Scholar 

  • Ohlemüller R, Anderson BJ, Araújo MB, Butchart SHM, Kudrna O, Ridgely RS, Thomas CD (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4(5):568–572

    Article  PubMed  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pitelka LF (1997) Plant migration and climate change. Am Sci 85(5):464–473

    Google Scholar 

  • Pompe S, Hanspach J, Badeck F, Klotz S, Thuiller W, Kühn I (2008) Climate and land use change impacts on plant distributions in Germany. Biol Lett 4(5):564–567

    Article  PubMed  Google Scholar 

  • R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479

    Article  PubMed  Google Scholar 

  • Settele J, Hammen V, Hulme PE, Karlson U, Klotz S, Kotarac M, Kunin WE, Marion G, O’Connor M, Petanidou T et al (2005) ALARM: Assesing LArge scale environmental Risks for biodiversity with tested Methods. GAIA 14:72–96

    Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T et al (2008) Climatic risk Atlas of European butterflies. BioRisk 1, Pensoft, Sofia

  • Spangenberg JH (2007) Integrated scenarios for assessing biodiversity risks. Sust Dev 15:343–356

    Article  Google Scholar 

  • Svenning JC, Skov F (2007) Ice age legacies in the geographic distribution of tree species richness in Europe. Glob Ecol Biogeog 16:234–245

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005a) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB (2005b) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Google Scholar 

  • Walter H, Straka H (1970) Arealkunde—Floristisch-historische Geobotanik. III/2 Verlag Eugen Ulmer, Stuttgart

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H et al. (2009) Alien species in a warmer world—risks and opportunities. Trends Ecol Evol. doi:10.1016/j.tree.2009.06.008

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5(9):475–482

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100AD. Proc Natl Acad Sci 104:5738–5742

    Article  PubMed  CAS  Google Scholar 

  • Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Yesson C, Brewer PW, Sutton T, Caithness N, Pahwa JS, Burgess M, Gray WA, White RJ, Jones AC, Bisby FA (2007) How global is the global biodiversity information facility. PLoS ONE 11:e1124

    Article  Google Scholar 

  • Zobel M (1992) Plant-species coexistence—the role of historical, evolutionary and ecological factors. Oikos 65:314–320

    Article  Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness. An alternative explanation of species coexistence? Trends Ecol Evol 12:266–269

    Article  Google Scholar 

Download references

Acknowledgements

The project is supported by the German Federal Agency for Nature Conservation (BfN) with funds of the Federal Ministry for Environment, Nature Conservation and Nuclear Safety through the project “Flora & Climate” (FKZ 80581001) and the Integrated Project “ALARM: Assessing LArge scale environmental Risks with tested Methods” (www.alarmproject.net) funded by the European Commission within Framework Programme 6 (GOCE-CT-2003-506675, Settele et al. 2005). We thank Dagmar Haase of the Helmholtz-Centre for Environmental Research—UFZ, Department of Computational Landscape Ecology (CLE) for the Digital Terrain Model (DGM1000) of Europe, Walter Durka and Oliver Schweiger of the Helmholtz-Centre for Environmental Research—UFZ, Department of Community Ecology for data preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Bergmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, J., Pompe, S., Ohlemüller, R. et al. The Iberian Peninsula as a potential source for the plant species pool in Germany under projected climate change. Plant Ecol 207, 191–201 (2010). https://doi.org/10.1007/s11258-009-9664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9664-6

Keywords

Navigation