Baas M., De Dreu C.K.W., Nijstad B.A.: A meta-analysis of 25 years of moodcreativity research: hedonic tone, activation, or regulatory focus?. Psychol. Bull. 134, 779–806 (2008)
Article
Google Scholar
Bak A.A., Grobbee D.E.: A randomized study on coffee and blood pressure. J. Hum. Hypertens. 4, 259–264 (1990)
Google Scholar
Baumgartner T., Esslen M., Jäncke L.: From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int. J. Psychophysiol. 60(1), 34–43 (2006)
Article
Google Scholar
Beedie C.J., Terry P.C., Lane A.M.: Distinctions between emotion and mood. Cogn. Emot. 19, 847–878 (2005)
Article
Google Scholar
Bishop C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
MATH
Google Scholar
Boehner K., DePaula R., Dourish P., Sengers P.: How emotion is made and measured. Int. J. Hum.-Comput. Stud. 65, 275–291 (2007)
Article
Google Scholar
Boucsein W.: Electrodermal Activity. Plenum Press, New York (1992)
Google Scholar
Caberletti, L., Elfmann, K., Kümmel, M., Schierz, C.: Influence of ambient lighting in vehicle interior on the driver’s perception. In: de Kort, Y., IJsselsteijn, W., Vogels, I., Aarts, M., Tenner, A., Smolders, K. (eds.) Proceedings of Experiencing Light 2009 International Conference on the Effects of Light on Wellbeing, pp. 5–13, Eindhoven, The Netherlands (2009)
Cacioppo J., Tassinary L.: Inferring psychological significance from physiological signals. Am. Psychol. 45, 16–28 (1990)
Article
Google Scholar
Calvo R.A., D’Mello S.: Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1, 18–37 (2010)
Article
Google Scholar
Carberry S., de Rosis F.: Introduction to special issue on affective modeling and adaptation. User Model. User-Adapt. Interact. 18, 1–9 (2008)
Article
Google Scholar
Chin N.D.: Emperical evaluation of user models and user adaptive systems. User Model. User-Adapt. Interact. 11, 181–194 (2001)
MATH
Article
Google Scholar
Clore G.L., Palmer J.: Affective guidance of intelligent agents: how emotion controls cognition. Cogn. Syst. Res. 10(1), 21–30 (2009)
Article
Google Scholar
Csíkszentmihályi M.: Flow: The Psychology of Optimal Experience. Harper Collins, Sussex, UK (1990)
Google Scholar
de Rosis F.: Preface: towards adaptation of interaction to affective factors. User Model. User-Adapt. Interact. 11, 267–278 (2001)
Article
Google Scholar
D’Mello S., Craig S.D., Witherspoon A., McDaniel B., Graesser A.: Automatic detection of learners affect from conversational cues. User Model. User-Adapt. Interact. 18, 45–80 (2008)
Article
Google Scholar
Fairclough S.H.: Fundamentals of physiological computing. Interact. Comput. 21, 133–145 (2009)
Article
Google Scholar
Fogg B.J.: Persuas. Technology. Morgan Kaufmann Publishers, New York (2003)
Google Scholar
Frijda N.H.: The Emotions. Cambridge University Press, New York (1986)
Google Scholar
Geenen R., van de Vijver F.J.R.: A simple test of the law of initial values. Psychophysiology 30(5), 525–530 (1993)
Article
Google Scholar
Gendolla G.H.E.: On the impact of mood on behavior: an integrative theory and a review. Rev. Gen. Psychol. 4, 378–408 (2000)
Article
Google Scholar
Gendolla G.H.E., Brinkman K.: The role of mood states in self-regulation: effects on action preferences and resource mobilization. Eur. Psychol. 10, 187–198 (2005)
Article
Google Scholar
Gendolla G.H.E., Krüsken J.: Mood state and cardiovascular response in active coping with an affect-regulative challenge. Int. J. Psychophysiol. 41, 169–180 (2001)
Article
Google Scholar
Hanson M.A., Powell H.C. Jr, Barth A.T., Ringgenberg K., Calhoun B.H., Aylor J.H. et al.: Body area sensor networks: challenges and opportunities. IEEE Comput. 42, 58–65 (2009)
Article
Google Scholar
Härdle W.: Smoothing Techniques, with Implementations in S. Springer, New York (1991)
Google Scholar
Healey, J.A.: Affect detection in the real world: recording and processing physiological signals. In: Proceedings of the IEEE 3rd International Conference on Affective Computing and Intelligent Interaction, ACII, Vol. 1, pp. 729–734. IEEE Press, Amsterdam (2009)
Healey J.A., Picard R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6, 156–166 (2005)
Article
Google Scholar
Healey, J.A., Picard, R.W., Dabek, F.: A new affect-perceiving interface and its application to personalized music selection. In: Turk, M. (ed.) Proceedings of the 1998 Workshop on Perceptual User Interfaces (PUI), San Francisco, CA, USA (1998)
Heinz C., Seeger B.: Cluster kernels: resource-aware kernel density estimators over streaming data. IEEE Trans. Knowl. Data Eng. 20, 880–893 (2008)
Article
Google Scholar
Höök K.: Affective loop experiences: designing for interactional embodiment. Philos. Trans. R. Soc. B 364, 3585–3595 (2009)
Article
Google Scholar
Husain G., Thompson W.F., Schellenberg E.G.: Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Percept. 20, 151–171 (2002)
Article
Google Scholar
Janssen J.H., Bailenson J.N., IJsselstein W.A., Westerink J.H.D.M.: Intimate heartbeats: opportunities for affective communication technology. IEEE Trans. Affect. Comput. 1(2), 72–80 (2010)
Article
Google Scholar
Kaptein M., Eckles D.: Selecting effective means to any end: futures and ethics of per30 suasion profiling. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) Persuasive Technology, pp. 82–93. Springer, Berlin (2010)
Chapter
Google Scholar
Kim J., André E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067–2083 (2008)
Article
Google Scholar
Kowal J., Fortier M.: Motivational determinants of flow: contributions from selfdetermination theory. J. Soc. Psychol. 139, 355–368 (1999)
Article
Google Scholar
Lemmens, P., Crompvoets, F., Brokken, D., van den Eerenbeemd, J., De Vries, G.-J.: A body-conforming tactile jacket to enrich movie viewing. In World Haptics Conference, pp. 7–12. IEEE, Los Alamitos (2009)
Lesiuk T.: The effect of music listening on work performance. Psychol. Music 33, 173–191 (2005)
Article
Google Scholar
Liljedahl, M., Sjömark, C., Lefford, N.: Using music to promote physical well-being via computer-mediated interaction. In MusicNetwork Open Workshop, 5 (2005)
Mandel M., Poliner G., Ellis D.: Support vector machine active learning for music retrieval. ACM Multimed. Syst. J. 12, 3–13 (2006)
Article
Google Scholar
Matthews G., Jones D.M., Chamberlain A.G.: Refining the measurement of mood: the UWIST mood adjective checklist. Br. J. Psychol. 81, 17–42 (1990)
Article
Google Scholar
McFarland R.A., Kennison R.: Asymmetry in the relationship between finger temperature changes and emotional state in males. Appl. Psychophysiol. Biofeedback 14(4), 281–290 (1989)
Google Scholar
North A.C.H., David J.: Musical preferences during and after relaxation and exercise. Am. J. Psychol. 113, 43–67 (2000)
Article
Google Scholar
North A.C.H., Hargreaves D.J., Hargreaves J.J.: Uses of music in everyday life. Music Percept. 22, 41–77 (2004)
Article
Google Scholar
Oliver, N., Flores-Mangas, F.: MPTrain: a mobile, music and physiology-based personal trainer. In: Proceedings of the 8th Conference on Human–Computer Interaction with Mobile Devices and Services, pp. 21–28. ACM, New York (2006)
Oliver, N., Kregor-Stickles, L.: PAPA: physiology and purpose-aware automatic playlist generation. In: Lemström, K., Tindale, A., Dannenberg, R. (eds.) Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), pp. 250–253, Victoria, Canada, 8–12 October 2006
Ophira E., Nass C., Wagner A.D.: Cognitive control in media multitaskers. Proc. Natl Acad. Sci. 106, 15583–15587 (2009)
Article
Google Scholar
Pantic M., Patras I.: Dynamics of facial expressions: recognition of facial actions and their temporal segments from face profile image sequences. IEEE Trans. Man Syst. Cybernet. B 36, 433–449 (2006)
Article
Google Scholar
Pelletier C.L.: The effect of music on decreasing arousal due to stress: a meta-analysis. J. Music Ther. 41, 192–214 (2004)
Google Scholar
Peter C., Herbon A.: Emotion representation and physiology assignments in digital systems. Interact. Comput. 18, 139–170 (2006)
Article
Google Scholar
Picard R.W.: Affective Computing. MIT Press, Cambridge (1997)
Google Scholar
Picard R.W.: Affective computing: challenges. Int. J. Hum.-Comput. Stud. 59, 55–64 (2003)
Article
Google Scholar
Prinz J.J.: Gut Reactions: A Perceptual Theory of Emotion. Oxford University Press, New York (2004)
Google Scholar
Rentfrow P.J., Gosling S.D.: The do re mi’s of everyday life: the structure and personality correlates of music preference. J. Pers. Soc. Psychol. 84, 1236–1256 (2003)
Article
Google Scholar
Rickard N.S.: Intense emotional responses to music: A test of the physiological arousal hypothesis. Psychol. Music 32, 371–388 (2004)
Article
Google Scholar
Rimm-Kaufman S.E., Kagan J.: The psychological significance of changes in skin temperature. Motiv. Emot. 20(1), 64–78 (1996)
Article
Google Scholar
Ritossa D.A., Rickard N.S.: The relative utility of ‘pleasantness’ and ‘liking’ dimensions in predicting the emotions expressed by music. Psychol. Music 32, 5–22 (2004)
Article
Google Scholar
Russell J.A.: Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145–172 (2003)
Article
Google Scholar
Rusting C.L.: Personality, mood, and cognitive processing of emotional information: three conceptual frameworks. Psychol. Bull. 124, 165–196 (1998)
Article
Google Scholar
Saarikallio S., Erkkilä J.: Role of music in adolescents’ mood regulation. Psychol. Music 35, 88–109 (2007)
Article
Google Scholar
Scott D., Sain S.: Multidimensional density estimation. In: Rao, C.R., Wegman, E.J., Solka, J.L. (eds.) Handbook of Statistics, Vol. 24, pp. 229–261. Elsevier, North Holland (2005)
Google Scholar
Silverman B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)
MATH
Google Scholar
Sloboda J.A.: Exploring the Musical Mind: Cognition, Emotion, Ability, Function. Oxford University Press, New York (2005)
Google Scholar
Sotiropoulos D.N., Lampropoulos A.S., Tsihrintzis G.A.: MUSIPER: a system for modeling music similarity perception based on objective feature subset selection. User Model. User-Adapt. Interact. 18, 315–348 (2008)
Article
Google Scholar
Thayer R.E.: The Biopsychology of Mood and Activation. Oxford University Press, New York (1989)
Google Scholar
Tractinsky N.: Tools over solutions? comments on interacting with computers special issue on affective computing. Interact. Comput. 16, 751–757 (2004)
Article
Google Scholar
Turlach, B.A.: Bandwidth selection in kernel density estimation: a review. Discussion Paper 9317, Institut de Statistique, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (1993)
Vaillant G.: Aging Well: Surprising Guideposts to a Happier Life from the Landmark Harvard Study of Adult Development. Little, Brown and Company, Boston (2003)
Google Scholar
Van den Broek, E.L., Janssen, J.H., Westerink, J.H.D.M.: Guidelines for Affective Signal Processing (ASP): From lab to life. In Proceedings of the IEEE 3rd international conference on affective computing and intelligent interaction, ACII, Vol. 1, pp. 704–709. IEEE Press, Amsterdam, The Netherlands (2009a)
Van den Broek, E.L., Janssen, J.H., Westerink, J.H.D.M., Healey, J.A.: Prerequisites for Affective Signal Processing (ASP). In: Encarnaçã, P., Veloso, A. (eds.) Biosignals 2009: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pp. 426–433, Porto, Portugal (2009b)
Van den Broek E.L., Lisý V., Janssen J.H., Westerink J.H.D.M., Schut M.H., Tuinenbreijer K.: Affective man–machine interface: unveiling human emotions through biosignals. In: Fred, A., Filipe, J., Gamboa, H. (eds.) Biomedical Engineering Systems and Technologies: BIOSTEC2009 Selected Revised Papers, Vol. 52., pp. 21–47. Springer, Berlin (2010)
Google Scholar
Wagenaar W.A.: Note on the construction of digram-balanced latin squares. Psychol. Bull. 72, 384–386 (1969)
Article
Google Scholar
Webster G.D., Weir C.G.: Emotional responses to music: interactive effects of mode, texture, and tempo. Motiv. Emot. 29, 19–39 (2005)
Article
Google Scholar
Westerink, J.H.D.M., De Vries, G., Waele, S., Eerenbeemd, J., Boven, M., Ouwerkerk, M.: Emotion measurement platform for daily life situations. In: Nijholt, A., Cohn, J., Pantic, M. (eds.) Proceedings of ACII’09: Affective Computing and Intelligent Interaction, pp. 217–223. IEEE, Los Alamitos (2009)
Wilder J.: Stimulus and Response: The Law of Initial Values. Wright, Bristol (1967)
Google Scholar
Wilhelm P., Schoebi D.: Assessing mood in daily life: structural validity, sensitivity to change, and reliability of a short-scale to measure three basic dimensions of mood. Eur. J. Psychol. Assess. 23, 258–267 (2007)
Article
Google Scholar
Wilson G.F., Russell C.A.: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Hum. Factors 45, 635–644 (2003)
Article
Google Scholar
Yannakakis G.N., Hallam J., Lund H.H.: Entertainment capture through heart rate activity in physical interactive playgrounds. User Model. User-Adapt. Interact. 18, 207–243 (2008)
Article
Google Scholar
Zeng Z., Pantic M., Roisman G.I., Huang T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31, 39–58 (2009)
Article
Google Scholar