Skip to main content

Advertisement

Log in

Renal, cardiovascular, and safety outcomes of adding sodium–glucose cotransporter-2 inhibitors to insulin therapy in patients with type-2 diabetes: a meta-analysis

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Aims

To investigate the renal, cardiovascular, and safety outcomes when sodium–glucose cotransporter-2 inhibitors (SGLT2is) were added to insulin therapy in patients with type-2 diabetes mellitus (T2DM).

Materials and methods

We searched Embase, PubMed, and Cochrane libraries for reports published up to Feb 2023. Randomized controlled trials (RCTs) comparing SGLT2is and insulin combination therapy (SGLT2is + INS group) with insulin therapy alone (INS group) in T2DM were included.

Results

Fourteen RCTs involving six thousand one hundred twenty subjects with durations of 12–104 weeks were included. Compared with the insulin group, the SGLT2is + INS group showed decreased glycosylated hemoglobin values and insulin dosages (P < 0.00001). Meanwhile, the SGLT2is + INS group had a reduced urinary albumin/creatinine ratio (UACR) by 25.42 mg/g and uric acid concentration (P = 0.030; P = 0.001, respectively) but the estimated glomerular filtration rate (eGFR) and renal-related adverse events were unaffected (P = 0.070; P = 0.880, respectively). Blood pressure and body weight were lower in the SGLT2is + INS group (P < 0.01). However, the risk of genital infection was bigger when SGLT2is were added to insulin therapy (P < 0.00001), but the risks of severe hypoglycemia or urinary tract infection were equal between the two groups (P > 0.05).

Conclusion

Adding SGLT2is to insulin therapy in T2DM patients showed better glucose control and decreased albuminuria, uric acid, blood pressure, and body weight without a reduction in the eGFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article or its supplementary materials.

References

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119

    Article  PubMed  Google Scholar 

  2. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ et al (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet 378(9785):31–40

    Article  CAS  PubMed  Google Scholar 

  3. Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12(12):2032–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Basu S, Yudkin JS, Kehlenbrink S, Davies JI, Wild SH, Lipska KJ et al (2019) Estimation of global insulin use for type 2 diabetes, 2018–30: a microsimulation analysis. Lancet Diabetes Endocrinol 7(1):25–33

    Article  PubMed  Google Scholar 

  5. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ (2019) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134(10):752–772

    Article  Google Scholar 

  6. Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255–270

    Article  CAS  PubMed  Google Scholar 

  7. Fonseca-Correa JI, Correa-Rotter R (2021) Sodium-glucose cotransporter 2 inhibitors mechanisms of action: a review. Front Med (Lausanne) 8:777861

    Article  PubMed  Google Scholar 

  8. American Diabetes Association (2019) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care 42(Suppl 1):S90-S102

  9. Chao EC, Henry RR (2010) SGLT2 inhibition–a novel strategy for diabetes treatment. Nat Rev Drug Discov 9(7):551–559

    Article  CAS  PubMed  Google Scholar 

  10. Salah HM, Al’Aref SJ, Khan MS, Al-Hawwas M, Vallurupalli S, Mehta JL et al (2021) Effect of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes-systematic review and meta-analysis of randomized placebo-controlled trials. Am Heart J 232:10–22

    Article  CAS  PubMed  Google Scholar 

  11. Madaan T, Akhtar M, Najmi AK (2016) Sodium glucose CoTransporter 2 (SGLT2) inhibitors: current status and future perspective. Eur J Pharm Sci 93:244–252

    Article  CAS  PubMed  Google Scholar 

  12. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lau J, Ioannidis JP, Terrin N, Schmid CH, Olkin I (2006) The case of the misleading funnel plot. BMJ 333(7568):597–600

    Article  PubMed  PubMed Central  Google Scholar 

  14. Macaskill P, Walter SD, Irwig L (2001) A comparison of methods to detect publication bias in meta-analysis. Stat Med 20(4):641–654

    Article  CAS  PubMed  Google Scholar 

  15. Wilding JP, Norwood P, T’Joen C, Bastien A, List JF, Fiedorek FT (2009) A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care 32(9):1656–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilding JP, Woo V, Rohwedder K, Sugg J, Parikh S (2014) Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes Metab 16(2):124–136

    Article  CAS  PubMed  Google Scholar 

  17. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ et al (2014) Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 37(7):1815–1823

    Article  CAS  PubMed  Google Scholar 

  18. Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ (2015) Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 17(10):936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Ways K et al (2015) Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care 38(3):403–411

    Article  CAS  PubMed  Google Scholar 

  20. Cefalu WT, Leiter LA, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ (2015) Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care 38(7):1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishihara H, Yamaguchi S, Nakao I, Okitsu A, Asahina S (2016) Efficacy and safety of ipragliflozin as add-on therapy to insulin in Japanese patients with type 2 diabetes mellitus (IOLITE): a multi-centre, randomized, placebo-controlled, double-blind study. Diabetes Obes Metab 18(12):1207–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki K, Mitsuma Y, Sato T, Anraku T, Hatta M (2016) Comparison of combined tofogliflozin and glargine, tofogliflozin added to insulin, and insulin dose-increase therapy in uncontrolled type 2 diabetes. J Clin Med Res 8(11):805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inagaki N, Harashima S, Maruyama N, Kawaguchi Y, Goda M, Iijima H (2016) Efficacy and safety of canagliflozin in combination with insulin: a double-blind, randomized, placebo-controlled study in Japanese patients with type 2 diabetes mellitus. Cardiovasc Diabetol 15:89

    Article  PubMed  PubMed Central  Google Scholar 

  24. Araki E, Onishi Y, Asano M, Kim H, Yajima T (2017) Efficacy and safety of dapagliflozin over 1 year as add-on to insulin therapy in Japanese patients with type 2 diabetes: the DAISY (Dapagliflozin Added to patients under InSulin therapY) trial. Diabetes Obes Metab 19(4):562–570

    Article  CAS  PubMed  Google Scholar 

  25. Terauchi Y, Tamura M, Senda M, Gunji R, Kaku K (2017) Efficacy and safety of tofogliflozin in Japanese patients with type 2 diabetes mellitus with inadequate glycaemic control on insulin therapy (J-STEP/INS): results of a 16-week randomized, double-blind, placebo-controlled multicentre trial. Diabetes Obes Metab 19(10):1397–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seino Y, Sasaki T, Fukatsu A, Imazeki H, Ochiai H, Sakai S (2018) Efficacy and safety of luseogliflozin added to insulin therapy in Japanese patients with type 2 diabetes: a multicenter, 52-week, clinical study with a 16-week, double-blind period and a 36-week, open-label period. Curr Med Res Opin 34(6):981–994

    Article  CAS  PubMed  Google Scholar 

  27. Yang W, Ma J, Li Y, Li Y, Zhou Z, Kim JH et al (2018) Dapagliflozin as add-on therapy in Asian patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: a randomized controlled trial. J Diabetes 10(7):589–599

    Article  PubMed  Google Scholar 

  28. Sone H, Kaneko T, Shiki K, Tachibana Y, Pfarr E, Lee J et al (2020) Efficacy and safety of empagliflozin as add-on to insulin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 22(3):417–426

    Article  CAS  PubMed  Google Scholar 

  29. Cheng R, Taleb N, Stainforth-Dubois M, Rabasa-Lhoret R (2021) The promising future of insulin therapy in diabetes mellitus. Am J Physiol Endocrinol Metab 320(5):E886-e890

    Article  CAS  PubMed  Google Scholar 

  30. Steenkamp D, Eby EL, Gulati N, Liao B (2022) Adherence and persistence to insulin therapy in people with diabetes: impact of connected insulin pen delivery ecosystem. J Diabetes Sci Technol 16(4):995–1002

    Article  PubMed  Google Scholar 

  31. Lee YB, Han K, Kim B, Choi MS, Park J, Kim M et al (2021) Risk of early mortality and cardiovascular disease according to the presence of recently diagnosed diabetes and requirement for insulin treatment: a nationwide study. J Diabetes Investig 12(10):1855–1863

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nordklint AK, Almdal TP, Vestergaard P, Lundby-Christensen L, Boesgaard TW, Breum L et al (2021) Effect of metformin and insulin vs. placebo and insulin on whole body composition in overweight patients with type 2 diabetes: a randomized placebo-controlled trial. Osteoporos Int 32(9):1837–1848

    Article  CAS  PubMed  Google Scholar 

  33. Gubitosi-Klug RA (2014) The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: summary and future directions. Diabetes Care 37(1):44–49

    Article  PubMed  Google Scholar 

  34. Min SH, Yoon JH, Hahn S, Cho YM (2017) Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis. Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.2818

    Article  PubMed  Google Scholar 

  35. Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S (2011) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 13(10):928–938

    Article  CAS  PubMed  Google Scholar 

  36. Muskiet MHA, Wheeler DC, Heerspink HJL (2019) New pharmacological strategies for protecting kidney function in type 2 diabetes. Lancet Diabetes Endocrinol 7(5):397–412

    Article  CAS  PubMed  Google Scholar 

  37. Kim MN, Moon JH, Cho YM (2021) Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes Obes Metab 23(11):2561–2571

    Article  CAS  PubMed  Google Scholar 

  38. Cassis P, Locatelli M, Cerullo D, Corna D, Buelli S, Zanchi C et al (2018) SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. https://doi.org/10.1172/jci.insight.98720

    Article  PubMed  PubMed Central  Google Scholar 

  39. DeFronzo RA, Reeves WB, Awad AS (2021) Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 17(5):319–334

    Article  CAS  PubMed  Google Scholar 

  40. Miller WG, Bachmann LM, Delanghe JR, Inker LA, Jones GRD, Vassalotti JA (2019) Optimal use of biomarkers for chronic kidney disease. Clin Chem 65(8):949–955

    Article  PubMed  Google Scholar 

  41. Yu B, Dong C, Hu Z, Liu B (2021) Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: a protocol for systematic review and meta-analysis. Medicine (Baltimore) 100(8):e24655

    Article  CAS  PubMed  Google Scholar 

  42. Feng C, Wu M, Chen Z, Yu X, Nie Z, Zhao Y et al (2019) Effect of SGLT2 inhibitor on renal function in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Int Urol Nephrol 51(4):655–669

    Article  CAS  PubMed  Google Scholar 

  43. Cherney D, Lund SS, Perkins BA, Groop PH, Cooper ME, Kaspers S et al (2016) The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia 59(9):1860–1870

    Article  CAS  PubMed  Google Scholar 

  44. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ et al (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2(5):369–384

    Article  CAS  PubMed  Google Scholar 

  45. Jongs N, Greene T, Chertow GM, McMurray JJV, Langkilde AM, Correa-Rotter R et al (2021) Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 9(11):755–766

    Article  CAS  PubMed  Google Scholar 

  46. Xu L, Li Y, Lang J, Xia P, Zhao X, Wang L et al (2017) Effects of sodium-glucose co-transporter 2 (SGLT2) inhibition on renal function and albuminuria in patients with type 2 diabetes: a systematic review and meta-analysis. PeerJ 5:e3405

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334

    Article  CAS  PubMed  Google Scholar 

  48. Sridhar VS, Neuen BL, Fletcher RA, Slee A, Ang FG, Rapattoni W et al (2023) Kidney protection with canagliflozin: a combined analysis of the randomized CANVAS program and CREDENCE trials. Diabetes Obes Metab 25(8):2331–2339

  49. Norris KC, Smoyer KE, Rolland C, Van der Vaart J, Grubb EB (2018) Albuminuria, serum creatinine, and estimated glomerular filtration rate as predictors of cardio-renal outcomes in patients with type 2 diabetes mellitus and kidney disease: a systematic literature review. BMC Nephrol 19(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ala M, Khoshdel MRF, Dehpour AR (2022) Empagliflozin enhances autophagy, mitochondrial biogenesis, and antioxidant defense and ameliorates renal ischemia/reperfusion in nondiabetic rats. Oxid Med Cell Longev 2022:1197061

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hussain M, Elahi A, Hussain A, Iqbal J, Akhtar L, Majid A (2021) Sodium-glucose cotransporter-2 (SGLT-2) attenuates serum uric acid (SUA) level in patients with type 2 diabetes. J Diabetes Res 2021:9973862

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sobhani S, Raji S, Aghaee A, Pirzadeh P, Ebrahimi Miandehi E, Shafiei S et al (2022) Body mass index, lipid profile, and hypertension contribute to prolonged QRS complex. Clin Nutr ESPEN 50:231–237

    Article  PubMed  Google Scholar 

  53. Younk LM, Lamos EM, Davis SN (2014) The cardiovascular effects of insulin. Expert Opin Drug Saf 13(7):955–966

    Article  CAS  PubMed  Google Scholar 

  54. Reed JW (2016) Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vasc Health Risk Manag 12:393–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheong AJY, Teo YN, Teo YH, Syn NL, Ong HT, Ting AZH et al (2022) SGLT inhibitors on weight and body mass: a meta-analysis of 116 randomized-controlled trials. Obesity (Silver Spring) 30(1):117–128

    Article  CAS  PubMed  Google Scholar 

  56. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  PubMed  Google Scholar 

  57. Halimi S, Vergès B (2014) Adverse effects and safety of SGLT-2 inhibitors. Diabetes Metab 40(6 Suppl 1):S28-34

    Article  CAS  PubMed  Google Scholar 

  58. Nishimura R, Omiya H, Sugio K, Ubukata M, Sakai S, Samukawa Y (2016) Sodium-glucose cotransporter 2 inhibitor luseogliflozin improves glycaemic control, assessed by continuous glucose monitoring, even on a low-carbohydrate diet. Diabetes Obes Metab 18(7):702–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fralick M, MacFadden DR (2020) A hypothesis for why sodium glucose co-transporter 2 inhibitors have been found to cause genital infection, but not urinary tract infection. Diabetes Obes Metab 22(5):755–758

    Article  CAS  PubMed  Google Scholar 

  60. Daniele G, Xiong J, Solis-Herrera C, Merovci A, Eldor R, Tripathy D et al (2016) Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care 39(11):2036–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Six Talent Peaks Project in Jiangsu Province (WSN-336); the Scientific Research Project of Health Commission in Jiangsu Province (LGY2020067); and the Scientific Research Project, Taizhou School of Clinical Medicine, Nanjing Medical University (TZKY20220110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 429 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, Q., Yang, L. et al. Renal, cardiovascular, and safety outcomes of adding sodium–glucose cotransporter-2 inhibitors to insulin therapy in patients with type-2 diabetes: a meta-analysis. Int Urol Nephrol 56, 557–570 (2024). https://doi.org/10.1007/s11255-023-03719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03719-6

Keywords

Navigation