Skip to main content

Advertisement

Log in

The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

The WNT/β-catenin system is an evolutionarily conserved signaling pathway that plays a crucial role in morphogenesis and cell tissue formation during embryogenesis. Although usually suppressed in adulthood, it can be reactivated during organ damage and regeneration. Transient activation of the WNT/β-catenin pathway stimulates tissue regeneration after acute kidney injury, while persistent (uncontrolled) activation can promote the development of chronic kidney disease (CKD). CKD-MBD is a clinical syndrome that develops with systemic mineral and bone metabolism disorders caused by CKD, characterized by abnormal bone mineral metabolism and/or extraosseous calcification, as well as cardiovascular disease associated with CKD, including vascular stiffness and calcification.

Objective

This paper aims to comprehensively review the WNT/β-catenin signaling pathway in relation to CKD-MBD, focusing on its components, regulatory molecules, and regulatory mechanisms. Additionally, this review highlights the challenges and opportunities for using small molecular compounds to target the WNT/β-catenin signaling pathway in CKD-MBD therapy.

Methods

We conducted a comprehensive literature review using various scientific databases, including PubMed, Scopus, and Web of Science, to identify relevant articles. We searched for articles that discussed the WNT/β-catenin signaling pathway, CKD-MBD, and their relationship. We also reviewed articles that discussed the components of the WNT/β-catenin signaling pathway, its regulatory molecules, and regulatory mechanisms.

Results

The WNT/β-catenin signaling pathway plays a crucial role in CKD-MBD by promoting vascular calcification and bone mineral metabolism disorders. The pathway’s components include WNT ligands, Frizzled receptors, and LRP5/6 co-receptors, which initiate downstream signaling cascades leading to the activation of β-catenin. Several regulatory molecules, including GSK-3β, APC, and Axin, modulate β-catenin activation. The WNT/β-catenin signaling pathway also interacts with other signaling pathways, such as the BMP pathway, to regulate CKD-MBD.

Conclusions

The WNT/β-catenin signaling pathway is a potential therapeutic target for CKD-MBD. Small molecular compounds that target the components or regulatory molecules of the pathway may provide a promising approach to treat CKD-MBD. However, more research is needed to identify safe and effective compounds and to determine the optimal dosages and treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Our study did not report any data.

References

  1. Zoccali C, Vanholder R, Massy ZA et al (2017) The systemic nature of CKD. Nat Rev Nephrol 13(6):344–358

    Article  PubMed  Google Scholar 

  2. Zhou M, Wang H, Zeng X et al (2019) Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 394(10204):1145–1158

    Article  PubMed  Google Scholar 

  3. Banerjee D, Rosano G, Herzog CA (2021) Management of heart failure patient with CKD. Clin J Am Soc Nephrol CJASN 16(7):1131–1139

    Article  CAS  PubMed  Google Scholar 

  4. Zanoli L, Lentini P, Briet M et al (2019) Arterial stiffness in the heart disease of CKD. J Am Soc Nephrol 30(6):918–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jankowski J, Floege J, Fliser D, Böhm M, Marx N (2021) Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143(11):1157–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    Article  CAS  PubMed  Google Scholar 

  7. Nusse R, Clevers H (2017) Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169(6):985–999

    Article  CAS  PubMed  Google Scholar 

  8. Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog nature reviews. Nephrology 12(7):426–439

    CAS  PubMed  Google Scholar 

  9. Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41(7):793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kusserow A, Pang K, Sturm C et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433(7022):156–160

    Article  CAS  PubMed  Google Scholar 

  11. Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452

    Article  CAS  PubMed  Google Scholar 

  12. Yu J, Chia J, Canning CA, Jones CM, Bard FA, Virshup DM (2014) WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Dev Cell 29(3):277–291

    Article  CAS  PubMed  Google Scholar 

  13. Bhanot P, Brink M, Samos CH et al (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382(6588):225–230

    Article  CAS  PubMed  Google Scholar 

  14. Xu YK, Nusse R (1998) The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Current biol CB 8(12):R405-406

    Article  CAS  Google Scholar 

  15. Foord SM, Bonner TI, Neubig RR et al (2005) International Union of pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57(2):279–288

    Article  CAS  PubMed  Google Scholar 

  16. Gammons MV, Renko M, Johnson CM, Rutherford TJ, Bienz M (2016) Wnt signalosome assembly by DEP domain swapping of dishevelled. Mol Cell 64(1):92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science (New York, NY) 337(6090):59–64

    Article  CAS  Google Scholar 

  18. Colozza G, Koo BK (2021) Wnt/β-catenin signaling: structure, assembly and endocytosis of the signalosome. Dev Growth Differ 63(3):199–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gammons M, Bienz M (2018) Multiprotein complexes governing Wnt signal transduction. Curr Opin Cell Biol 51:42–49

    Article  CAS  PubMed  Google Scholar 

  20. Niehrs C, Shen J (2010) Regulation of Lrp6 phosphorylation. Cell Mol Life Sci CMLS 67(15):2551–2562

    Article  CAS  PubMed  Google Scholar 

  21. Jiang X, Charlat O, Zamponi R, Yang Y, Cong F (2015) Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 58(3):522–533

    Article  CAS  PubMed  Google Scholar 

  22. Bilic J, Huang YL, Davidson G et al (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science (New York, NY) 316(5831):1619–1622

    Article  CAS  Google Scholar 

  23. Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22(5):717–727

    Article  CAS  PubMed  Google Scholar 

  24. Zeng X, Huang H, Tamai K et al (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development (Cambridge, England) 135(2):367–375

    Article  CAS  PubMed  Google Scholar 

  25. Daly CS, Shaw P, Ordonez LD et al (2017) Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumorigenesis in murine mammary epithelium. Oncogene 36(13):1793–1803

    Article  CAS  PubMed  Google Scholar 

  26. Saito-Diaz K, Benchabane H, Tiwari A et al (2018) APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway. Dev Cell 44(5):566-581.e568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng X, Tamai K, Doble B et al (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438(7069):873–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  30. Taelman VF, Dobrowolski R, Plouhinec JL et al (2010) Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143(7):1136–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel P, Woodgett JR (2017) Glycogen synthase kinase 3: a kinase for all pathways? Curr Top Dev Biol 123:277–302

    Article  CAS  PubMed  Google Scholar 

  32. Vinyoles M, Del Valle-Pérez B, Curto J et al (2014) Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell 53(3):444–457

    Article  CAS  PubMed  Google Scholar 

  33. Dobrowolski R, De Robertis EM (2011) Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 13(1):53–60

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dobrowolski R, Vick P, Ploper D et al (2012) Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment. Cell Rep 2(5):1316–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Albrecht LV, Ploper D, Tejeda-Muñoz N, De Robertis EM (2018) Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking. Proc Natl Acad Sci USA 115(23):E5317-e5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albrecht LV, Bui MH, De Robertis EM (2019) Canonical Wnt is inhibited by targeting one-carbon metabolism through methotrexate or methionine deprivation. Proc Natl Acad Sci USA 116(8):2987–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Wang C, Jiang H, Luo C (2019) A patent review of arginine methyltransferase inhibitors (2010–2018). Expert Opin Ther Pat 29(2):97–114

    Article  CAS  PubMed  Google Scholar 

  38. Reyes M, Flores T, Betancur D, Peña-Oyarzún D, Torres VA (2020) Wnt/β-catenin signaling in oral carcinogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms21134682

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muñoz-Castañeda JR, Rodelo-Haad C, de Pendon-Ruiz Mier MV, Martin-Malo A, Santamaria R, Rodriguez M (2020) Klotho/FGF23 and Wnt signaling as important players in the comorbidities associated with chronic kidney disease. Toxins. https://doi.org/10.3390/toxins12030185

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chong JM, Uren A, Rubin JS, Speicher DW (2002) Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin modules. J Biol Chem 277(7):5134–5144

    Article  CAS  PubMed  Google Scholar 

  41. Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY (2011) Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat Struct Mol Biol 18(8):886–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li N, Wei L, Liu X et al (2019) A Frizzled-like cysteine-rich domain in glypican-3 mediates Wnt binding and regulates hepatocellular carcinoma tumor growth in mice. Hepatology (Baltimore, MD) 70(4):1231–1245

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Cheong SM, Amado NG et al (2015) Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev Cell 32(6):719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kakugawa S, Langton PF, Zebisch M et al (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519(7542):187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, MacDonald BT, Gao H et al (2016) Characterization of tiki, a new family of Wnt-specific metalloproteases. J Biol Chem 291(5):2435–2443

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science (New York, NY) 317(5839):803–806

    Article  CAS  Google Scholar 

  47. Green J, Nusse R, van Amerongen R (2014) The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harbor Perspect Biol. https://doi.org/10.1101/cshperspect.a009175

    Article  Google Scholar 

  48. Stricker S, Rauschenberger V, Schambony A (2017) ROR-family receptor tyrosine kinases. Curr Top Dev Biol 123:105–142

    Article  CAS  PubMed  Google Scholar 

  49. Kim KA, Zhao J, Andarmani S et al (2006) R-Spondin proteins: a novel link to beta-catenin activation. Cell cycle (Georgetown, Tex) 5(1):23–26

    Article  CAS  PubMed  Google Scholar 

  50. Kazanskaya O, Glinka A, del Barco BI, Stannek P, Niehrs C, Wu W (2004) R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell 7(4):525–534

    Article  CAS  PubMed  Google Scholar 

  51. Carmon KS, Gong X, Lin Q, Thomas A, Liu Q (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 108(28):11452–11457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Lau W, Barker N, Low TY et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297

    Article  PubMed  Google Scholar 

  53. Glinka A, Dolde C, Kirsch N et al (2011) LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep 12(10):1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Lau W, Peng WC, Gros P, Clevers H (2014) The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 28(4):305–316

    Article  PubMed  PubMed Central  Google Scholar 

  55. Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM (2018) WNT signaling in cardiac and vascular disease. Pharmacol Rev 70(1):68–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hao HX, Xie Y, Zhang Y et al (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485(7397):195–200

    Article  CAS  PubMed  Google Scholar 

  57. Giebel N, de Jaime-Soguero A, García Del Arco A et al (2021) USP42 protects ZNRF3/RNF43 from R-spondin-dependent clearance and inhibits Wnt signalling. EMBO Rep 22(5):e51415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koo BK, Spit M, Jordens I et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488(7413):665–669

    Article  CAS  PubMed  Google Scholar 

  59. Lebensohn AM, Rohatgi R (2018) R-spondins can potentiate WNT signaling without LGRs. Elife. https://doi.org/10.7554/eLife.33126

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dubey R, van Kerkhof P, Jordens I et al (2020) R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. Elife. https://doi.org/10.7554/eLife.54469

    Article  PubMed  PubMed Central  Google Scholar 

  61. Park S, Cui J, Yu W, Wu L, Carmon KS, Liu QJ (2018) Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. J Biol Chem 293(25):9759–9769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szenker-Ravi E, Altunoglu U, Leushacke M et al (2018) RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature 557(7706):564–569

    Article  CAS  PubMed  Google Scholar 

  63. Chang TH, Hsieh FL, Zebisch M, Harlos K, Elegheert J, Jones EY (2015) Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. Elife. https://doi.org/10.7554/eLife.06554

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ke J, Harikumar KG, Erice C et al (2013) Structure and function of Norrin in assembly and activation of a Frizzled 4-Lrp5/6 complex. Genes Dev 27(21):2305–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mao B, Wu W, Davidson G et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417(6889):664–667

    Article  CAS  PubMed  Google Scholar 

  66. Niida A, Hiroko T, Kasai M et al (2004) DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23(52):8520–8526

    Article  CAS  PubMed  Google Scholar 

  67. Kirsch N, Chang LS, Koch S et al (2017) Angiopoietin-like 4 Is a Wnt signaling antagonist that promotes LRP6 turnover. Dev Cell 43(1):71-82.e76

    Article  CAS  PubMed  Google Scholar 

  68. Ding Y, Colozza G, Sosa EA et al (2018) Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. Proc Natl Acad Sci USA 115(39):E9135-e9144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo W, Peterson A, Garcia BA et al (2007) Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J 26(6):1511–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science (New York, NY) 346(6205):1248012–12480128

    Article  Google Scholar 

  71. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development (Cambridge, England) 136(19):3205–3214

    Article  PubMed  Google Scholar 

  72. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779

    Article  CAS  PubMed  Google Scholar 

  73. Ma L, Wang HY (2007) Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non-canonical pathway. J Biol Chem 282(39):28980–28990

    Article  CAS  PubMed  Google Scholar 

  74. Yang Y, Mlodzik M (2015) Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol 31:623–646

    Article  PubMed  PubMed Central  Google Scholar 

  75. Albrecht LV, Tejeda-Muñoz N, De Robertis EM (2021) Cell biology of canonical Wnt signaling. Annu Rev Cell Dev Biol 37:369–389

    Article  CAS  PubMed  Google Scholar 

  76. Cruciat CM, Niehrs C (2013) Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5(3):a015081

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu C, Li Y, Semenov M et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847

    Article  CAS  PubMed  Google Scholar 

  78. van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277(20):17901–17905

    Article  PubMed  Google Scholar 

  79. Cong F, Schweizer L, Varmus H (2004) Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development (Cambridge, England) 131(20):5103–5115

    Article  CAS  PubMed  Google Scholar 

  80. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407(6803):535–538

    Article  CAS  PubMed  Google Scholar 

  81. Tamai K, Semenov M, Kato Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407(6803):530–535

    Article  CAS  PubMed  Google Scholar 

  82. Hernández AR, Klein AM, Kirschner MW (2012) Kinetic responses of β-catenin specify the sites of Wnt control. Science (New York, NY) 338(6112):1337–1340

    Article  Google Scholar 

  83. Yu F, Yu C, Li F et al (2021) Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 6(1):307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pfaff EM, Becker S, Günther A, Königshoff M (2011) Dickkopf proteins influence lung epithelial cell proliferation in idiopathic pulmonary fibrosis. Eur Respir J 37(1):79–87

    Article  CAS  PubMed  Google Scholar 

  85. Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM (2019) Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Front Immunol 10:2135

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA (2014) Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int 85(1):142–150

    Article  CAS  PubMed  Google Scholar 

  87. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Investig 116(5):1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clément-Lacroix P, Ai M, Morvan F et al (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 102(48):17406–17411

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tu X, Delgado-Calle J, Condon KW et al (2015) Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci USA 112(5):E478-486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Holmen SL, Zylstra CR, Mukherjee A et al (2005) Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 280(22):21162–21168

    Article  CAS  PubMed  Google Scholar 

  91. Kramer I, Halleux C, Keller H et al (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30(12):3071–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell … and more. Endocr Rev 34(5):658–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE (2017) Sclerostin deficiency in humans. Bone 96:51–62

    Article  PubMed  Google Scholar 

  95. Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO (2013) LRP5 and LRP6 in development and disease. Trends Endocrinol Metab 24(1):31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li X, Ominsky MS, Niu QT et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869

    Article  PubMed  Google Scholar 

  97. Winkler DG, Sutherland MK, Geoghegan JC et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ (2011) Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE 6(10):e25900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grotewold L, Theil T, Rüther U (1999) Expression pattern of Dkk-1 during mouse limb development. Mech Dev 89(1–2):151–153

    Article  CAS  PubMed  Google Scholar 

  100. Morvan F, Boulukos K, Clément-Lacroix P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21(6):934–945

    Article  CAS  PubMed  Google Scholar 

  101. Nakajima H, Ito M, Morikawa Y et al (2009) Wnt modulators, SFRP-1, and SFRP-2 are expressed in osteoblasts and differentially regulate hematopoietic stem cells. Biochem Biophys Res Commun 390(1):65–70

    Article  CAS  PubMed  Google Scholar 

  102. Ominsky MS, Li C, Li X et al (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res 26(5):1012–1021

    Article  CAS  PubMed  Google Scholar 

  103. Feng G, Chang-Qing Z, Yi-Min C, Xiao-Lin L (2015) Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int Immunopharmacol 24(1):7–13

    Article  PubMed  Google Scholar 

  104. Jin H, Wang B, Li J et al (2015) Anti-DKK1 antibody promotes bone fracture healing through activation of β-catenin signaling. Bone 71:63–75

    Article  CAS  PubMed  Google Scholar 

  105. Ominsky MS, Boyce RW, Li X, Ke HZ (2017) Effects of sclerostin antibodies in animal models of osteoporosis. Bone 96:63–75

    Article  CAS  PubMed  Google Scholar 

  106. Moe SM, Chen NX, Newman CL et al (2015) Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J Bone Miner Res 30(3):499–509

    Article  PubMed  Google Scholar 

  107. Fang Y, Ginsberg C, Seifert M et al (2014) CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol 25(8):1760–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Coulson J, Bagley L, Barnouin Y et al (2017) Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults. Osteoporos Int 28(9):2683–2689

    Article  CAS  PubMed  Google Scholar 

  109. Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA (2016) Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int 89(6):1231–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Carrillo-López N, Panizo S, Alonso-Montes C et al (2016) Direct inhibition of osteoblastic Wnt pathway by fibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int 90(1):77–89

    Article  PubMed  Google Scholar 

  111. Sabbagh Y, Graciolli FG, O’Brien S et al (2012) Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 27(8):1757–1772

    Article  CAS  PubMed  Google Scholar 

  112. Li C, Xing Q, Yu B et al (2013) Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH. J Bone Miner Res 28(10):2094–2108

    Article  CAS  PubMed  Google Scholar 

  113. Bellido T, Ali AA, Gubrij I et al (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146(11):4577–4583

    Article  CAS  PubMed  Google Scholar 

  114. Guo J, Liu M, Yang D et al (2010) Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 11(2):161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kulkarni NH, Halladay DL, Miles RR et al (2005) Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem 95(6):1178–1190

    Article  CAS  PubMed  Google Scholar 

  116. Lv W, Guan L, Zhang Y, Yu S, Cao B, Ji Y (2016) Sclerostin as a new key factor in vascular calcification in chronic kidney disease stages 3 and 4. Int Urol Nephrol 48(12):2043–2050

    Article  CAS  PubMed  Google Scholar 

  117. Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D (2013) The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol CJASN 8(5):819–823

    Article  CAS  PubMed  Google Scholar 

  118. Malluche HH, Mawad H, Monier-Faugere MC (2004) The importance of bone health in end-stage renal disease: out of the frying pan, into the fire? Nephrol Dial Transplant 19(Suppl 1):i9-13

    Article  PubMed  Google Scholar 

  119. Yang CY, Chang ZF, Chau YP et al (2015) Circulating Wnt/β-catenin signalling inhibitors and uraemic vascular calcifications. Nephrol Dial Transpl 30(8):1356–1363

    Article  Google Scholar 

  120. Ho TY, Chen NC, Hsu CY et al (2019) Evaluation of the association of Wnt signaling with coronary artery calcification in patients on dialysis with severe secondary hyperparathyroidism. BMC Nephrol 20(1):345

    Article  PubMed  PubMed Central  Google Scholar 

  121. Albanese I, Yu B, Al-Kindi H et al (2017) Role of noncanonical Wnt signaling pathway in human aortic valve calcification. Arterioscler Thromb Vasc Biol 37(3):543–552

    Article  CAS  PubMed  Google Scholar 

  122. Cai T, Sun D, Duan Y et al (2016) WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp Cell Res 345(2):206–217

    Article  CAS  PubMed  Google Scholar 

  123. Freise C, Kretzschmar N, Querfeld U (2016) Wnt signaling contributes to vascular calcification by induction of matrix metalloproteinases. BMC Cardiovasc Disord 16(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA (2005) Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Investig 115(5):1210–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang H, Chen J, Shen Z et al (2018) Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling. Toxicol Lett 284:29–36

    Article  CAS  PubMed  Google Scholar 

  126. Anastasilakis AD, Polyzos SA, Gkiomisi A, Bisbinas I, Gerou S, Makras P (2013) Comparative effect of zoledronic acid versus denosumab on serum sclerostin and dickkopf-1 levels of naive postmenopausal women with low bone mass: a randomized, head-to-head clinical trial. J Clin Endocrinol Metab 98(8):3206–3212

    Article  CAS  PubMed  Google Scholar 

  127. Gatti D, Viapiana O, Fracassi E et al (2012) Sclerostin and DKK1 in postmenopausal osteoporosis treated with denosumab. J Bone Miner Res 27(11):2259–2263

    Article  CAS  PubMed  Google Scholar 

  128. Gatti D, Viapiana O, Idolazzi L, Fracassi E, Rossini M, Adami S (2011) The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab 96(5):1555–1559

    Article  CAS  PubMed  Google Scholar 

  129. Evenepoel P, D’Haese P, Brandenburg V (2014) Romosozumab in postmenopausal women with osteopenia. N Engl J Med 370(17):1664

    Article  CAS  PubMed  Google Scholar 

  130. Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543

    Article  CAS  PubMed  Google Scholar 

  131. Langdahl BL, Libanati C, Crittenden DB et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet (London, England) 390(10102):1585–1594

    Article  CAS  PubMed  Google Scholar 

  132. Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377(15):1417–1427

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors have contributed to the preparation and editing of this manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jiancheng Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Our study did not involve humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Adu, I.K., Zhang, H. et al. The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome. Int Urol Nephrol 55, 2527–2538 (2023). https://doi.org/10.1007/s11255-023-03569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03569-2

Keywords

Navigation