Skip to main content

Advertisement

Log in

The protective effects of SGLT-2 inhibitors, GLP-1 receptor agonists, and RAAS blockers against renal injury in patients with type 2 diabetes

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Diabetic kidney disease is one of the most severe complications of type 2 diabetes mellitus. Patients with diabetic kidney disease have a worse prognosis in terms of mortality and morbidity, compared with patients who have diabetes alone. Strict control of blood pressure and blood glucose is the primary method for prevention of initial kidney damage and delaying further progression of existing damage. Other management approaches include the use of exogenous drugs that can effectively protect the kidneys from diabetes, such as sodium-glucose transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and renin–angiotensin–aldosterone system blockers. These drugs may protect against kidney injury through various molecular mechanisms. This review focuses on renal impairment in patients with type 2 diabetes; it discusses the direct and indirect effects of sodium-glucose transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and renin–angiotensin–aldosterone system blockers on diabetic kidney disease. Finally, it discusses the effects of combination treatment with two or three types of drugs in patients with chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Doshi SM, Friedman AN (2017) Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol CJASN 12(8):1366–1373

    Article  CAS  PubMed  Google Scholar 

  2. Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, Uribarri J (2022) Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. https://doi.org/10.1016/j.kint.2022.05.012

    Article  PubMed  Google Scholar 

  3. Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Investig 124(6):2333–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lassén E, Daehn IS (2020) Molecular mechanisms in early diabetic kidney disease: glomerular endothelial cell dysfunction. Int J Mol Sci 21(24):9456

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gnudi L, Karalliedde J (2016) Beat it early: putative renoprotective haemodynamic effects of oral hypoglycaemic agents. Nephrol Dial Transplant 31(7):1036–1043

    Article  CAS  PubMed  Google Scholar 

  6. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS (2018) Update of pathophysiology and management of diabetic kidney disease. Journal of the Formosan Medical Association = Taiwan yi zhi. 117(8):662–675

    Article  CAS  PubMed  Google Scholar 

  7. Taylor SI, Yazdi ZS, Beitelshees AL (2021) Pharmacological treatment of hyperglycemia in type 2 diabetes. J Clin Investig 131(2)

  8. Bailey RA, Wang Y, Zhu V, Rupnow MF (2014) Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes 7:415

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22(1):104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishimura R, Osonoi T, Kanada S, Jinnouchi H, Sugio K, Omiya H, Ubukata M, Sakai S, Samukawa Y (2015) Effects of luseogliflozin, a sodium-glucose co-transporter 2 inhibitor, on 24-h glucose variability assessed by continuous glucose monitoring in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, crossover study. Diabetes Obes Metab 17(8):800–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maldonado-Cervantes MI, Galicia OG, Moreno-Jaime B, Zapata-Morales JR, Montoya-Contreras A, Bautista-Perez R, Martinez-Morales F (2012) Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK(1) cells. J Physiol Biochem 68(3):411–420

    Article  CAS  PubMed  Google Scholar 

  12. Dekkers C, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink H (2018) Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 20(8):1988–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP (2017) Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens 35(10):2059–2068

    Article  CAS  PubMed  Google Scholar 

  14. Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, Song P, Freeman B, Kim YC, Soleimani M, Sharma K, Thomson SC, Vallon V (2020) A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol 319(4):F712–F728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zelniker TA, Braunwald E (2020) Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 Inhibitors: JACC state-of-the-art review. J Am Coll Cardiol 75(4):422–434

    Article  CAS  PubMed  Google Scholar 

  16. Ye T, Zhang J, Wu D, Shi J, Kuang Z, Ma Y, Xu Q, Chen B, Kan C, Sun X, Han F (2022) Empagliflozin attenuates obesity-related kidney dysfunction and NLRP3 inflammasome activity through the HO-1-adiponectin axis. Front Endocrinol 13:907984

    Article  Google Scholar 

  17. Zhao M, Sun S, Huang Z, Wang T, Tang H (2020) Network meta-analysis of novel glucose-lowering drugs on risk of acute kidney injury. Clin J Am Soc Nephrol CJASN 16(1):70–78

    Article  CAS  PubMed  Google Scholar 

  18. Ikeda S, Takano Y, Cynshi O, Tanaka R, Christ AD, Boerlin V, Beyer U, Beck A, Ciorciaro C, Meyer M, Kadowaki T (2015) A novel and selective sodium-glucose cotransporter-2 inhibitor, tofogliflozin, improves glycaemic control and lowers body weight in patients with type 2 diabetes mellitus. Diabetes Obes Metab 17(10):984–993

    Article  CAS  PubMed  Google Scholar 

  19. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, Brenner BM (2004) Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 65(6):2309–2320

    Article  PubMed  Google Scholar 

  20. Heerspink HJ, Johnsson E, Gause-Nilsson I, Cain VA, Sjöström CD (2016) Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes Metab 18(6):590–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nespoux J, Vallon V (2018) SGLT2 inhibition and kidney protection. Clin Sci 132(12):1329–1339

    Article  CAS  Google Scholar 

  22. Oshima M, Neuen BL, Li J, Perkovic V, Charytan DM, de Zeeuw D, Edwards R, Greene T, Levin A, Mahaffey KW, De Nicola L, Pollock C, Rosenthal N, Wheeler DC, Jardine MJ, Heerspink H (2020) Early change in albuminuria with canagliflozin predicts kidney and cardiovascular outcomes: a post hoc analysis from the CREDENCE trial. J Am Soc Nephrol 31(12):2925–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Bommel E, Muskiet M, van Baar M, Tonneijck L, Smits MM, Emanuel AL, Bozovic A, Danser A, Geurts F, Hoorn EJ, Touw DJ, Larsen EL, Poulsen HE, Kramer M, Nieuwdorp M, Joles JA, van Raalte DH (2020) The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int 97(1):202–212

    Article  PubMed  Google Scholar 

  24. Cherney D, Cooper ME, Tikkanen I, Pfarr E, Johansen OE, Woerle HJ, Broedl UC, Lund SS (2018) Pooled analysis of Phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int 93(1):231–244

    Article  CAS  PubMed  Google Scholar 

  25. de Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, Rossing P, Zoungas S, Bakris G (2017) Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care 40(9):1273–1284

    Article  PubMed  Google Scholar 

  26. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, Woodward M, MacMahon S, Turnbull F, Hillis GS, Chalmers J, Mant J, Salam A, Rahimi K, Perkovic V, Rodgers A (2016) Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 387(10017):435–443

    Article  PubMed  Google Scholar 

  27. Zou H, Zhou B, Xu G (2017) SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease. Cardiovasc Diabetol 16(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  28. Packer M (2018) Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab 20(6):1361–1366

    Article  CAS  PubMed  Google Scholar 

  29. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134(10):752–772

    Article  CAS  PubMed  Google Scholar 

  30. Puglisi S, Rossini A, Poli R, Dughera F, Pia A, Terzolo M, Reimondo G (2021) Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol 12:738848

    Article  Google Scholar 

  31. Wakisaka M (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(18):1799–1800

    Article  PubMed  Google Scholar 

  32. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado R, Bhatt DL, Leiter LA, McGuire DK, Wilding J, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166):31–39

    Article  CAS  PubMed  Google Scholar 

  33. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, Johansen OE (2015) Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 17(12):1180–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonino B, Leoncini G, De Cosmo S, Greco E, Russo GT, Giandalia A, Viazzi F, Pontremoli R (2019) antihypertensive treatment in diabetic kidney disease: the need for a patient-centered approach. Medicina 55(7):382

    Article  PubMed  PubMed Central  Google Scholar 

  35. Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HJ, Broedl UC, Johansen OE (2015) SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 12(2):90–100

    Article  CAS  PubMed  Google Scholar 

  36. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R (2016) SGLT2 inhibitors and the diabetic kidney. Diabetes Care 39(Suppl 2):S165–S171

    Article  CAS  PubMed  Google Scholar 

  37. Ikonomidis I, Pavlidis G, Thymis J, Birba D, Kalogeris A, Kousathana F, Kountouri A, Balampanis K, Parissis J, Andreadou I, Katogiannis K, Dimitriadis G, Bamias A, Iliodromitis E, Lambadiari V (2020) Effects of glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, and their combination on endothelial glycocalyx, arterial function, and myocardial work index in patients with type 2 diabetes mellitus after 12-month treatment. J Am Heart Assoc 9(9):e015716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  PubMed  Google Scholar 

  39. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129(5):587–597

    Article  CAS  PubMed  Google Scholar 

  40. Kim Y, Babu AR (2012) Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of type 2 diabetes. Diabetes Metab Syndr Obes Targets Ther 5:313–327

    CAS  Google Scholar 

  41. Sen T, Heerspink H (2021) A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab 33(4):732–739

    Article  CAS  PubMed  Google Scholar 

  42. Mazidi M, Rezaie P, Gao HK, Kengne AP (2017) Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004007

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sato T, Aizawa Y, Yuasa S, Fujita S, Ikeda Y, Okabe M (2020) The effect of dapagliflozin treatment on epicardial adipose tissue volume and P-wave indices: an ad-hoc analysis of the previous randomized clinical trial. J Atheroscler Thromb 27(12):1348–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu X, Yang Y, Hu X, Jia X, Liu H, Wei M, Lyu Z (2022) Effects of sodium-glucose cotransporter 2 inhibitors on serum uric acid in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Diabetes Obes Metab 24(2):228–238

    Article  CAS  PubMed  Google Scholar 

  45. Bailey CJ (2019) Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab 21(6):1291–1298

    Article  CAS  PubMed  Google Scholar 

  46. Castoldi G, Carletti R, Ippolito S, Colzani M, Barzaghi F, Stella A, Zerbini G, Perseghin G, Zatti G, di Gioia C (2021) Sodium-glucose cotransporter 2 inhibition prevents renal fibrosis in cyclosporine nephropathy. Acta Diabetol 58(8):1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liang S, Cai GY, Chen XM (2017) Clinical and pathological factors associated with progression of diabetic nephropathy. Nephrology 22(Suppl 4):14–19

    Article  CAS  PubMed  Google Scholar 

  48. Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, Kaneko S, Ota T (2017) SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20:137–149

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sun X, Han F, Lu Q, Li X, Ren D, Zhang J, Han Y, Xiang YK, Li J (2020) Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating sestrin2-mediated AMPK-mTOR signaling and redox homeostasis in high-fat diet-induced obese mice. Diabetes 69(6):1292–1305

    Article  CAS  PubMed  Google Scholar 

  50. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

    Article  CAS  PubMed  Google Scholar 

  51. Yaribeygi H, Atkin SL, Butler AE, Sahebkar A (2019) Sodium-glucose cotransporter inhibitors and oxidative stress: an update. J Cell Physiol 234(4):3231–3237

    Article  CAS  PubMed  Google Scholar 

  52. Nauck MA, Quast DR, Wefers J, Meier JJ (2021) GLP-1 receptor agonists in the treatment of type 2 diabetes—state-of-the-art. Mol Metab 46:101102

    Article  CAS  PubMed  Google Scholar 

  53. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844

    Article  CAS  PubMed  Google Scholar 

  54. Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, Matsumoto M, Mizutani K, Park K, Cahill C, Nishikawa S, Rask-Madsen C, King GL (2012) Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes 61(11):2967–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y (2014) The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int 85(3):579–589

    Article  CAS  PubMed  Google Scholar 

  56. Skov J (2014) Effects of GLP-1 in the kidney. Rev Endocr Metab Disord 15(3):197–207

    Article  CAS  PubMed  Google Scholar 

  57. Trang NN, Chung CC, Lee TW, Cheng WL, Kao YH, Huang SY, Lee TI, Chen YJ (2021) Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats. Int J Mol Sci 22(3):1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muskiet M, Tonneijck L, Smits MM, van Baar M, Kramer M, Hoorn EJ, Joles JA, van Raalte DH (2017) GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13(10):605–628

    Article  CAS  PubMed  Google Scholar 

  59. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG (2005) Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 143(8):559–569

    Article  CAS  PubMed  Google Scholar 

  60. Holmes-Truscott E, Schipp J, Dunning T, Furler J, Hagger V, Holloway EE, Manski-Nankervis JA, Shaw JE, Skinner T, Speight J (2022) “For me, it didn’t seem as drastic a step as being controlled by insulin”: a qualitative investigation of expectations and experiences of non-insulin injectable therapy among adults with type 2 diabetes. Diabet Med 39(2):e14681

    Article  CAS  PubMed  Google Scholar 

  61. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157

    Article  CAS  PubMed  Google Scholar 

  62. Mann J, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornøe K, Zinman B, Buse JB (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377(9):839–848

    Article  CAS  PubMed  Google Scholar 

  63. Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, Lam C, Khurmi NS, Heenan L, Del Prato S, Dyal L, Branch K (2021) Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med 385(10):896–907

    Article  CAS  PubMed  Google Scholar 

  64. De Cosmo S, Viazzi F, Piscitelli P, Leoncini G, Mirijello A, Bonino B, Pontremoli R (2019) Impact of CVOTs in primary and secondary prevention of kidney disease. Diabetes Res Clin Pract 157:107907

    Article  PubMed  Google Scholar 

  65. Górriz JL, Soler MJ, Navarro-González JF, García-Carro C, Puchades MJ, D&#x27, Marco L, Martínez Castelao A, Fernández-Fernández B, Ortiz A, Górriz-Zambrano C, Navarro-Pérez J, Gorgojo-Martinez JJ (2020) GLP-1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists. J Clin Med 9(4)

  66. Skov J, Dejgaard A, Frøkiær J, Holst JJ, Jonassen T, Rittig S, Christiansen JS (2013) Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 98(4):E664–E671

    Article  CAS  PubMed  Google Scholar 

  67. Tanaka T, Higashijima Y, Wada T, Nangaku M (2014) The potential for renoprotection with incretin-based drugs. Kidney Int 86(4):701–711

    Article  CAS  PubMed  Google Scholar 

  68. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, Makdissi A, Dandona P (2012) Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab 97(1):198–207

    Article  CAS  PubMed  Google Scholar 

  70. Ishibashi Y, Nishino Y, Matsui T, Takeuchi M, Yamagishi S (2011) Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metab Clin Exp 60(9):1271–1277

    Article  CAS  PubMed  Google Scholar 

  71. Deb DK, Bao R, Li YC (2017) Critical role of the cAMP-PKA pathway in hyperglycemia-induced epigenetic activation of fibrogenic program in the kidney. FASEB J 31(5):2065–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hirata K, Kume S, Araki S, Sakaguchi M, Chin-Kanasaki M, Isshiki K, Sugimoto T, Nishiyama A, Koya D, Haneda M, Kashiwagi A, Uzu T (2009) Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem Biophys Res Commun 380(1):44–49

    Article  CAS  PubMed  Google Scholar 

  73. Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ (2013) GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 19(5):567–575

    Article  CAS  PubMed  Google Scholar 

  74. Rameshrad M, Razavi BM, Lalau JD, De Broe ME, Hosseinzadeh H (2020) An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: a drug repositioning. Iran J Basic Med Sci 23(5):556–568

    PubMed  PubMed Central  Google Scholar 

  75. Schwartz SL, Ratner RE, Kim DD, Qu Y, Fechner LL, Lenox SM, Holcombe JH (2008) Effect of exenatide on 24-hour blood glucose profile compared with placebo in patients with type 2 diabetes: a randomized, double-blind, two-arm, parallel-group, placebo-controlled, 2-week study. Clin Ther 30(5):858–867

    Article  CAS  PubMed  Google Scholar 

  76. Berberich AJ, Hegele RA (2021) Lipid effects of glucagon-like peptide 1 receptor analogs. Curr Opin Lipidol 32(3):191–199

    Article  CAS  PubMed  Google Scholar 

  77. Stemmer K, Finan B, DiMarchi RD, Tschöp MH, Müller TD (2020) Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Adv Drug Deliv Rev 159:34–53

    Article  CAS  PubMed  Google Scholar 

  78. Ruggenenti P, Cravedi P, Remuzzi G (2010) The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol 6(6):319–330

    Article  CAS  PubMed  Google Scholar 

  79. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12):861–869

    Article  CAS  PubMed  Google Scholar 

  80. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345(12):851–860

    Article  CAS  PubMed  Google Scholar 

  81. Favre GA, Esnault VL, Van Obberghen E (2015) Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 308(6):E435–E449

    Article  CAS  PubMed  Google Scholar 

  82. Heyman SN, Walther T, Abassi Z (2021) Angiotensin-(1–7)-a potential remedy for AKI: insights derived from the COVID-19 pandemic. J Clin Med 10(6):1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sugimoto K, Qi NR, Kazdová L, Pravenec M, Ogihara T, Kurtz TW (2006) Telmisartan but not valsartan increases caloric expenditure and protects against weight gain and hepatic steatosis. Hypertension 47(5):1003–1009

    Article  CAS  PubMed  Google Scholar 

  84. Mou Y, Zhang Y, Guo C, Zhao J, Zhang Z, Zhou X, Dong J, Liao L (2018) Integrated treatment of prostaglandin E1 and angiotensin-converting enzyme inhibitor in diabetic kidney disease rats: possible role of antiapoptosis in renal tubular epithelial cells. DNA Cell Biol 37(2):133–141

    Article  CAS  PubMed  Google Scholar 

  85. Lytvyn Y, Burns KD, Testani JM, Lytvyn A, Ambinathan J, Osuntokun O, Godoy LC, Cherney D, Parker JD (2021) Renal hemodynamics and renin-angiotensin-aldosterone system profiles in patients with heart failure. J Cardiac Fail. https://doi.org/10.1016/j.cardfail.2021.08.015

    Article  Google Scholar 

  86. MacKinnon M, Shurraw S, Akbari A, Knoll GA, Jaffey J, Clark HD (2006) Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am J Kidney Dis 48(1):8–20

    Article  CAS  PubMed  Google Scholar 

  87. Wang Z, Huang W, Ren F, Luo L, Zhou J, Huang D, Jiang M, Du H, Fan J, Tang L (2021) Characteristics of Ang-(1–7)/mas-mediated amelioration of joint inflammation and cardiac complications in mice with collagen-induced arthritis. Front Immunol 12:655614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koszegi S, Molnar A, Lenart L, Hodrea J, Balogh DB, Lakat T, Szkibinszkij E, Hosszu A, Sparding N, Genovese F, Wagner L, Vannay A, Szabo AJ, Fekete A (2019) RAAS inhibitors directly reduce diabetes-induced renal fibrosis via growth factor inhibition. J Physiol 597(1):193–209

    Article  CAS  PubMed  Google Scholar 

  89. Ruilope LM (2008) Angiotensin receptor blockers: RAAS blockade and renoprotection. Curr Med Res Opin 24(5):1285–1293

    Article  CAS  PubMed  Google Scholar 

  90. DeFronzo RA (2017) Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor. Diabetes Obes Metab 19(10):1353–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sarafidis P, Ferro CJ, Morales E, Ortiz A, Malyszko J, Hojs R, Khazim K, Ekart R, Valdivielso J, Fouque D, London GM, Massy Z, Ruggenenti P, Porrini E, Wiecek A, Zoccali C, Mallamaci F, Hornum M (2020) SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol Dial Transplant 35(10):1825

    Article  PubMed  Google Scholar 

  92. Castellana M, Cignarelli A, Brescia F, Perrini S, Natalicchio A, Laviola L, Giorgino F (2019) Efficacy and safety of GLP-1 receptor agonists as add-on to SGLT2 inhibitors in type 2 diabetes mellitus: a meta-analysis. Sci Rep 9(1):19351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Frías JP, Guja C, Hardy E, Ahmed A, Dong F, Öhman P, Jabbour SA (2016) Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 4(12):1004–1016

    Article  PubMed  Google Scholar 

  94. Newman JD, Vani AK, Aleman JO, Weintraub HS, Berger JS, Schwartzbard AZ (2018) The changing landscape of diabetes therapy for cardiovascular risk reduction: JACC state-of-the-art review. J Am Coll Cardiol 72(15):1856–1869

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K, Yagi K, Arikawa E, Kern TS, King GL (2006) Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 55(11):3112–3120

    Article  CAS  PubMed  Google Scholar 

  96. Gorgojo-Martínez JJ, Serrano-Moreno C, Sanz-Velasco A, Feo-Ortega G, Almodóvar-Ruiz F (2017) Real-world effectiveness and safety of dapagliflozin therapy added to a GLP1 receptor agonist in patients with type 2 diabetes. Nutr Metab Cardiovasc Dis 27(2):129–137

    Article  PubMed  Google Scholar 

  97. Weber MA, Mansfield TA, Alessi F, Iqbal N, Parikh S, Ptaszynska A (2016) Effects of dapagliflozin on blood pressure in hypertensive diabetic patients on renin-angiotensin system blockade. Blood Press 25(2):93–103

    Article  CAS  PubMed  Google Scholar 

  98. Kojima N, Williams JM, Takahashi T, Miyata N, Roman RJ (2013) Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J Pharmacol Exp Ther 345(3):464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Burrell LM, Johnston CI, Tikellis C, Cooper ME (2004) ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab 15(4):166–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rodriguez R, Escobedo B, Lee AY, Thorwald M, Godoy-Lugo JA, Nakano D, Nishiyama A, Parkes DG, Ortiz RM (2020) Simultaneous angiotensin receptor blockade and glucagon-like peptide-1 receptor activation ameliorate albuminuria in obese insulin-resistant rats. Clin Exp Pharmacol Physiol 47(3):422–431

    Article  CAS  PubMed  Google Scholar 

  101. Wang HW, Mizuta M, Saitoh Y, Noma K, Ueno H, Nakazato M (2011) Glucagon-like peptide-1 and candesartan additively improve glucolipotoxicity in pancreatic β-cells. Metab Clin Exp 60(8):1081–1089

    Article  CAS  PubMed  Google Scholar 

  102. Morino J, Hirai K, Kaneko S, Minato S, Yanai K, Mutsuyoshi Y, Ishii H, Matsuyama M, Kitano T, Shindo M, Aomatsu A, Miyazawa H, Ito K, Ueda Y, Hoshino T, Ookawara S, Hara K, Morishita Y (2019) Two cases of advanced stage rapidly progressive diabetic nephropathy effectively treated with combination therapy including RAS blocker, GLP-1 receptor agonist and SGLT-2 inhibitor. CEN Case Reports 8(2):128–133

    Article  PubMed  PubMed Central  Google Scholar 

  103. Parr SK, Matheny ME, Abdel-Kader K, Greevy RA Jr, Bian A, Fly J, Chen G, Speroff T, Hung AM, Ikizler TA, Siew ED (2018) Acute kidney injury is a risk factor for subsequent proteinuria. Kidney Int 93(2):460–469

    Article  CAS  PubMed  Google Scholar 

  104. Neuen BL, Young T, Heerspink H, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott C, Bompoint S, Levin A, Jardine MJ (2019) SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  105. Warren AM, Knudsen ST, Cooper ME (2019) Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets 23(7):579–591

    Article  PubMed  Google Scholar 

  106. Giugliano D, Longo M, Scappaticcio L, Caruso P, Esposito K (2021) Sodium-glucose transporter-2 inhibitors for prevention and treatment of cardiorenal complications of type 2 diabetes. Cardiovasc Diabetol 20(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sposito AC, Berwanger O, de Carvalho L, Saraiva J (2018) GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 17(1):157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scheen AJ, Delanaye P (2022) Acute renal injury events in diabetic patients treated with SGLT2 inhibitors: a comprehensive review with a special reference to RAAS blockers. Diabetes Metab 48(2):101315

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81870593, 82170865), Natural Science Foundation of Shandong Province of China (ZR2020MH106), Shandong Province Higher Educational Science and Technology Program for Youth Innovation (2020KJL004), Shandong Province Medical and Health Science and Technology Development Project (202003060396, 202003060400).

Author information

Authors and Affiliations

Authors

Contributions

ZK: conceptualization, methodology, data curation, and writing—original draft preparation. C K and FH: data curation and investigation. HQ, NH and XS: supervision, writing—reviewing and editing, and funding acquisition.

Corresponding authors

Correspondence to Hongyan Qiu or Xiaodong Sun.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Z., Hou, N., Kan, C. et al. The protective effects of SGLT-2 inhibitors, GLP-1 receptor agonists, and RAAS blockers against renal injury in patients with type 2 diabetes. Int Urol Nephrol 55, 617–629 (2023). https://doi.org/10.1007/s11255-022-03355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03355-6

Keywords

Navigation