Skip to main content

Advertisement

Log in

The genetic side of diabetic kidney disease: a review

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Diabetic kidney disease (DKD) is one of the most common complications of diabetes, with approximately 30–40% of patients with type 1 diabetes mellitus and 20% of patients with type 2 diabetes mellitus eventually developing DKD. If DKD is not controlled in the early clinical stage and proteinuria develops, the disease will progress to end-stage renal disease. The pathogenesis of DKD remains largely unknown and is multifactorial, likely due to interactions between genetic and environmental factors. Familial clustering also supports a critical role of hereditary factors in DKD. The development of gene detection technology has promoted the exploration of DKD susceptibility genes in different cohorts of patients with diabetes. Identifying susceptibility genes can provide insights into the pathogenesis of DKD, as well as a basis for its clinical diagnosis and therapy.

Results

Numerous candidate gene loci have been found to be associated with DKD, many of which play critical regulatory roles in the pathogenesis of this disease, including genes involved in glycol-metabolism, lipid metabolism, the renin–angiotensin–aldosterone system, inflammation and oxidative stress. In this review, we summarize the functions of several susceptibility genes involved in the development of DKD.

Conclusion

Based on our findings, we recommend that studying susceptibility gene polymorphisms can lead to a better understanding of the pathogenesis of DKD and could help prevent this disease or improve its outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

DKD:

Diabetic kidney disease

T2DM:

Type 2 diabetes mellitus

ESRD:

End-stage renal disease

ACE:

Angiotensin (Ang)-converting enzyme

ALR2:

Aldose reductase 2

APOC1:

Apolipoprotein C1

APOE:

Apolipoprotein E

EPO:

Erythropoietin

HSPG2:

Heparan sulfate proteoglycan 2

FRMD3:

FERM domain-containing protein 3

CARS:

Chimeric antigen receptors

UNC13B:

Unc-13 homolog B

CPVL:

Cystic periventricular leukomalacia

NOS3:

Nitric oxide synthase3

VEGF:

Vascular endothelial growth factor

GREM1:

Gremlin 1

ELMO1:

Engulfment and cell motility 1

CCR5:

Chemokine receptor 5

CNDP1:

Carnosine dipeptidase 1

CCL2:

Chemokine ligand 2

IL1:

Interleukin-1

MMP9:

Matrix metallopeptidase 9

ADIPOQ:

Adiponectin

AGT:

Angiotensinogen

AGTR1:

Angiotensinogen receptor 1

GKRP:

Glucokinase regulatory protein

eGFR:

Estimated glomerular filtration rate

SLC12A3:

Solute carrier family 12 member 3

ACACB:

Acetyl-CoA carboxylase beta

ACC2:

Acetyl-CoA carboxylase 2

VNTR:

Variable number of tandem repeats

MTHFR:

Methylenetetrahydrofolate reductase

PPARγ:

Peroxisome proliferator-activated receptor-γ

References

  1. Rossing P (2006) Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep 6(6):479–483

    Article  Google Scholar 

  2. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR (2008) Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 233(1):4–11

    Article  CAS  Google Scholar 

  3. Skrunes R, Svarstad E, Reisæter AV, Vikse BE (2014) Familial clustering of ESRD in the Norwegian population. Clin J Am Soc Nephrol 9(10):1692–1700

    Article  Google Scholar 

  4. Hill CJ, Cardwell CR, Patterson CC, Maxwell AP, Magee GM, Young RJ, Matthews B, O’Donoghue DJ, Fogarty DG (2014) Chronic kidney disease and diabetes in the National health service: a cross-sectional survey of the UK national diabetes audit. Diabet Med 31(4):448–454

    Article  CAS  Google Scholar 

  5. Marshall SM (2014) Natural history and clinical characteristics of CKD in type 1 and type 2 diabetes mellitus. Adv Chronic Kidney Dis 21(3):267–272

    Article  Google Scholar 

  6. McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN, Hester JM, Wing MR, Bostrom MA, Rudock ME, Lewis JP, Talbert ME, Blevins RA, Lu L, Ng MC, Sale MM, Divers J, Langefeld CD, Freedman BI, Bowden DW (2011) A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int 79(5):563–572

    Article  Google Scholar 

  7. Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ (2011) Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54:544–553

    Article  CAS  Google Scholar 

  8. Nazir N, Siddiqui K, Al-Qasim S, Al-Naqeb D (2014) Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways. BMC Med Genet 15:103

    Article  Google Scholar 

  9. Wang F, Fang Q, Yu N, Zhao D, Zhang Y, Wang J, Wang Q, Zhou X, Cao X, Fan X (2012) Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J Renin Angiotensin Aldosterone Syst 13(1):161–174

    Article  CAS  Google Scholar 

  10. Jia HY, Wen SL (2012) Relationship between diabetic nephropathy and angiotensin converting enzyme insertion/deletion polymorphism in Chinese Han population: a systematic review. Chin J Diabetes 20:414–417

    CAS  Google Scholar 

  11. Zuo YF, Long AM, Huang XQ, Shen MJ (2012) Correlation of angiotensin-I converting enzyme gene insertion (I), deletion (D) polymorphism and type 2 diabetic nephropathy: a meta-analysis. Chin J Evid Based Med 12:1071–1075

    Google Scholar 

  12. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12):861–869

    Article  CAS  Google Scholar 

  13. Möllsten A, Kockum I, Svensson M, Rudberg S, Ugarph-Morawski A, Brismar K, Eriksson JW, Dahlquist G (2008) The effect of polymorphisms in the renin-angiotensin-aldosterone system on diabetic nephropathy risk. J Diabetes Complicat 22(6):377–383

    Article  Google Scholar 

  14. Möllsten A, Vionnet N, Forsblom C, Parkkonen M, Tarnow L, Hadjadj S, Marre M, Parving HH, Groop PH (2011) A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women. Mol Genet Metab 103(1):66–70

    Article  Google Scholar 

  15. Currie D, McKnight AJ, Patterson CC, Sadlier DM, Maxwell AP (2010) UK Warren 3/GoKinD Study Group. Investigation of ACE, ACE2 and AGTR1 genes for association with nephropathy in Type 1 diabetes mellitus. Diabet Med 27(10):1188–1194

    Article  CAS  Google Scholar 

  16. Ding W, Wang F, Fang Q, Zhang M, Chen J, Gu Y (2012) Association between two genetic polymorphisms of the renin-angiotensin-aldosterone system and diabetic nephropathy: a meta-analysis. Mol Biol Rep 39(2):1293–1303

    Article  CAS  Google Scholar 

  17. Mtiraoui N, Ezzidi I, Turki A, Chaieb M, Mahjoub T, Almawi WY (2011) Renin-angiotensin-aldosterone system genotypes and haplotypes affect the susceptibility to nephropathy in type 2 diabetes patients. J Renin Angiotensin Aldosterone Syst 12(4):572–580

    Article  CAS  Google Scholar 

  18. Miao J, Ying XY, Yang JQ, Li DH, Chen YX, Li L, Dong XH, Li H (2013) Study on relationship between-20A/C angiotensinogen gene polymorphisms and diabetic nephropathy of T2DM patients. Chin J Diabetes 21:113–117

    CAS  Google Scholar 

  19. Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV et al (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42(5):376–384

    Article  Google Scholar 

  20. Iwata M, Maeda S, Kamura Y, Takano A, Kato H, Murakami S, Higuchi K, Takahashi A, Fujita H, Hara K, Kadowaki T, Tobe K (2012) Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care 35(8):1763–1770

    Article  CAS  Google Scholar 

  21. Deshmukh HA, Palmer CN, Morris AD, Colhoun HM (2013) Investigation of known estimated glomerular filtration rate loci in patients with type 2 diabetes. Diabet Med 30(10):1230–1235

    Article  CAS  Google Scholar 

  22. Yan D, Wang J, Jiang F, Zhang R, Sun X, Wang T, Wang S, Peng D, He Z, Bao Y, Hu C, Jia W (2016) Association between serum uric acid related genetic loci and diabetic kidney disease in the Chinese type 2 diabetes patients. J Diabetes Complicat 30(5):798–802

    Article  Google Scholar 

  23. Poy F, Lepourcelet M, Shivdasani RA, Eck MJ (2001) Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol 8(12):1053–1057

    Article  CAS  Google Scholar 

  24. Jainandunsing S, Koole HR, van Miert JNI, Rietveld T, Wattimena JLD, Sijbrands EJG, de Rooij FWM (2018) Transcription factor 7-like 2 gene links increased in vivo insulin synthesis to type 2 diabetes. EBioMedicine 30:295–302

    Article  Google Scholar 

  25. Wu LS, Hsieh CH, Pei D, Hung YJ, Kuo SW, Lin E (2009) Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARgamma and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes. Nephrol Dial Transplant 24(11):3360–3366

    Article  CAS  Google Scholar 

  26. Fu LL, Lin Y, Yang ZL, Yin YB (2012) Association analysis of genetic polymorphisms of TCF7L2, CDKAL1, SLC30A8, HHEX genes and microvascular complications of type 2 diabetes mellitus. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 29(2):194–199

    CAS  Google Scholar 

  27. Buraczynska M, Zukowski P, Ksiazek P, Kuczmaszewska A, Janicka J, Zaluska W (2014) Transcription factor 7-like 2 (TCF7L2) gene polymorphism and clinical phenotype in end-stage renal disease patients. Mol Biol Rep 41(6):4063–4068

    Article  CAS  Google Scholar 

  28. Hussain H, Ramachandran V, Ravi S, Sajan T, Ehambaram K, Gurramkonda VB, Ramanathan G, Bhaskar LV (2014) TCF7L2 rs7903146 polymorphism and diabetic nephropathy association is not independent of type 2 diabetes–a study in a south Indian population and meta-analysis. Endokrynol Pol 65(4):298–305

    Article  Google Scholar 

  29. Fan Z, Cai Q, Chen Y, Meng X, Cao F, Zheng S, Guo J (2016) Association of the transcription factor 7 Like 2 (TCF7L2) polymorphism with diabetic nephropathy risk: a meta-analysis. Medicine (Baltimore) 95(11):e3087

    Article  CAS  Google Scholar 

  30. Araoka T, Abe H, Tominaga T, Mima A, Matsubara T, Murakami T, Kishi S, Nagai K, Doi T (2010) Transcription factor 7-like 2 (TCF7L2) regulates activin receptor-like kinase 1 (ALK1) Smad1 pathway for development of diabetic nephropathy. Mol Cells 30(3):209–218

    Article  CAS  Google Scholar 

  31. Zhang R, Zhuang L, Li M, Zhang J, Zhao W, Ge X, Chen Y, Wang F, Wang N, Bao Y, Liu L, Liu Y, Jia W (2018) Arg913Gln of SLC12A3 gene promotes development and progression of end-stage renal disease in Chinese type 2 diabetes mellitus. Mol Cell Biochem 437(1–2):203–210

    Article  CAS  Google Scholar 

  32. Li Y, Tang K, Zhang Z, Zhang M, Zeng Z, He Z, He L, Wan C (2011) Genetic diversity of the apolipoprotein E gene and diabetic nephropathy: a meta-analysis. Mol Biol Rep 38(5):3243–3252

    Article  CAS  Google Scholar 

  33. Wakil SJ, Abu-Elheiga LA (2009) Fatty acid metabolism: target for metabolic syndrome. J Lipid Res 50:38–43

    Article  Google Scholar 

  34. Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, Cooke JN, Toyoda M, Umezono T, Tarnow L, Hansen T, Gaede P, Jorsal A, Ng DP, Ikeda M, Yanagimoto T, Tsunoda T, Unoki H, Kawai K, Imanishi M, Suzuki D, Shin HD, Park KS, Kashiwagi A, Iwamoto Y, Kaku K, Kawamori R, Parving HH, Bowden DW, Pedersen O, Nakamura Y (2010) A single nucleotide polymorphism within the acetyl-coenzyme a carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet 6(2):e1000842

    Article  Google Scholar 

  35. Shah VN, Cheema BS, Sharma R, Khullar M, Kohli HS, Ahluwalia TS, Mohan V, Bhansali A (2013) ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes. Mol Cell Biochem 372(1–2):191–198

    Article  CAS  Google Scholar 

  36. Li T, Shi Y, Yin J, Qin Q, Wei S, Nie S, Liu L (2015) The association between lipid metabolism gene polymorphisms and nephropathy in type 2 diabetes: a meta-analysis. Int Urol Nephrol 47(1):117–130

    Article  CAS  Google Scholar 

  37. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291(5513):2613–2616

    Article  CAS  Google Scholar 

  38. Kobayashi MA, Watada H, Kawamori R, Maeda S (2010) Overexpression of acetyl-coenzyme A carboxylase beta increases proinflammatory cytokines in cultured human renal proximal tubular epithelial cells. Clin Exp Nephrol 14(4):315–324

    Article  CAS  Google Scholar 

  39. Xu Y, Huang J, Xin W, Chen L, Zhao X, Lv Z, Liu Y, Wan Q (2014) Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy. Metabolism 63(5):716–726

    Article  CAS  Google Scholar 

  40. Xin W, Zhao X, Liu L, Xu Y, Li Z, Chen L, Wang X, Yi F, Wan Q (2015) Acetyl-CoA carboxylase 2 suppression rescues human proximal tubular cells from palmitic acid induced lipotoxicity via autophagy. Biochem Biophys Res Commun 463(3):364–369

    Article  CAS  Google Scholar 

  41. Fisman EZ, Tenenbaum A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 13:103

    Article  Google Scholar 

  42. Liu M, Liu F (2014) Regulation of adiponectin multimerization, signaling, and function. Best Pract Res Clin Endocrinol Metab 28(1):25–31

    Article  Google Scholar 

  43. Jorsal A, Tarnow L, Frystyk J, Lajer M, Flyvbjerg A, Parving HH, Vionnet N, Rossing P (2008) Serum adiponectin predicts all-cause mortality and end stage renal disease in patients with type I diabetes and diabetic nephropathy. Kidney Int 74(5):649–654

    Article  CAS  Google Scholar 

  44. Chung HF, Long KZ, Hsu CC, Mamun AA, Chiu YF, Tu HP, Chen PS, Jhang HR, Hwang SJ, Huang MC (2014) Adiponectin gene (ADIPOQ) polymorphisms correlate with the progression of nephropathy in Taiwanese male patients with type 2 diabetes. Diabetes Res Clin Pract 105(2):261–270

    Article  CAS  Google Scholar 

  45. Choe EY, Wang HJ, Kwon O (2013) Variants of the adiponectin gene and diabetic microvascular complications in patients with type 2 diabetes. Metabolism 62(5):677–685

    Article  CAS  Google Scholar 

  46. El-Shal AS, Zidan HE, Rashad NM (2014) Adiponectin gene polymorphisms in Egyptian type 2 diabetes mellitus patients with and without diabetic nephropathy. Mol Biol Rep 41(4):2287–2298

    Article  CAS  Google Scholar 

  47. Fang F, Bae EH, Hu A, Liu GC, Zhou X, Williams V (2015) Deletion of the gene for adiponectin accelerates diabetic nephropathy in the Ins2 (+/C96Y) mouse. Diabetologia 58(7):1668–1678

    Article  CAS  Google Scholar 

  48. Stefanidis I, Kreuer K, Dardiotis E et al (2014) Association between the interleukin-1β Gene (IL1B) C - 511T polymorphism and the risk of diabetic nephropathy in type 2 diabetes: A candidate-gene association study. DNA Cell Biol 33:463–468

    Article  CAS  Google Scholar 

  49. Mao S, Huang S (2014) Monocyte chemoattractant protein-1 -2518G/a gene polymorphism and the risk of nephropathy in type 2 diabetes mellitus among Asians: a meta-analysis. Ren Fail 36:139–144

    Article  CAS  Google Scholar 

  50. Zhou TB, Jiang ZP, Qin YH, Drummen GP (2014) Association of transforming growth factor-β1 T869C gene polymorphism with diabetic nephropathy risk. Nephrology (Carlton) 19(2):107–115

    Article  CAS  Google Scholar 

  51. Mou X, Liu Y, Zhou D, Hu Y, Ma G, Shou C, Chen J, Zhou D (2016) Different risk indictors of diabetic nephropathy in transforming growth factor-beta1 T869C CC/CT genotype and TT genotype. Iran J Public Health 45(6):761–767

    Google Scholar 

  52. El-Sherbini SM, Shahen SM, Mosaad YM, Abdelgawad MS, Talaat RM (2013) Gene polymorphism of transforming growth factor-β1 in Egyptian patients with type 2 diabetes and diabetic nephropathy. Acta Biochim Biophys Sin (Shanghai) 45(4):330–338

    Article  CAS  Google Scholar 

  53. Valladares-Salgado A, Angeles-Martínez J, Rosas M, García-Mena J, Utrera-Barillas D, Gómez-Díaz R, Escobedo-de la Peña J, Parra EJ, Cruz M (2010) Association of polymorphisms within the transforming growth factor-β1 gene with diabetic nephropathy and serum cholesterol and triglyceride concentrations. Nephrology (Carlton) 15(6):644–648

    Article  CAS  Google Scholar 

  54. Ahluwalia TS, Khullar M, Ahuja M, Kohli HS, Bhansali A, Mohan V, Venkatesan R, Rai TS, Sud K, Singal PK (2009) Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS ONE 4(4):e5168

    Article  Google Scholar 

  55. Rodrigues KF, Pietrani NT, Sandrim VC, Vieira CM, Fernandes AP, Bosco AA, Gomes KB (2015) Association of a large panel of cytokine gene polymorphisms with complications and comorbidities in type 2 diabetes patients. J Diabetes Res 2015:605965

    Article  CAS  Google Scholar 

  56. Zhang J, Guan YL, Xiao Y, Zhang XW (2014) A meta-analysis of the association of G915C, G800A, C509T gene polymorphism of transforming growth factor-β1 with diabetic nephropathy risk. Ren Fail 36(2):321–326

    Article  CAS  Google Scholar 

  57. Dellamea BS, Pinto LC, Leitão CB, Santos KG, Canani LH (2014) Endothelial nitric oxide synthase gene polymorphisms and risk of diabetic nephropathy: a systematic review and meta-analysis. BMC Med Genet 16(15):9

    Article  Google Scholar 

  58. Santos KG, Crispim D, Canani LH, Ferrugem PT, Gross JL, Roisenberg I (2011) Association of eNOS gene polymorphisms with renal disease in Caucasians with type 2 diabetes. Diabetes Res Clin Pract 91(3):353–362

    Article  CAS  Google Scholar 

  59. Pollex RL, Mamakeesick M, Zinman B, Harris SB, Hegele RA, Hanley AJ (2007) Peroxisome proliferator-activated receptor gamma polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes. J Diabetes Complicat 21(3):166–171

    Article  Google Scholar 

  60. Liu G, Zhou TB, Jiang Z, Zheng D, Yuan F, Li Y, Hu H, Chen Z (2014) Relationship between PPARγ Pro12Ala gene polymorphism and type 2 diabetic nephropathy risk in Asian population: results from a meta-analysis. J Recept Signal Transduct Res 34(2):131–136

    Article  CAS  Google Scholar 

  61. Sivaskandarajah GA, Jeansson M, MaezawaY EV, Baelde HJ, Quaggin SE (2012) Vegfaprotects the glomerular microvasculature in diabetes. Diabetes 61(11):2958–2966

    Article  CAS  Google Scholar 

  62. Yang B, Cross DF, Ollerenshaw M, MillwardBA DAG (2003) Polymorphisms of the vascular endothelial growth factor and susceptibility to diabetic microvascular complications in type 1 diabetes mellitus. J Diabetes Complicat 17(1):1–6

    Article  Google Scholar 

  63. Nazir N, Siddiqui K, Al-Qasim S, Al-NaqebD (2014) Meta-analysis of diabetic nephropathy associated with genetic inflammation and angiogenesis involved different biochemical pathways. BMC Med Genet 15(1):103

    Article  Google Scholar 

  64. Yang S, Zhang J, Feng C, Huang G (2013) MTHFR 677T variant contributes to diabetic nephropathy risk in Caucasian individuals with type 2 diabetes: a meta-analysis. Metabolism 62(4):586–594

    Article  CAS  Google Scholar 

  65. Chang WW, Zhang L, Yao YS, Su H, Jin YL, Chen Y (2013) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and susceptibility to diabetic nephropathy in Chinese type 2 diabetic patients: a meta-analysis. Ren Fail 35(7):1038–1043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Jiangsu Research Hospital Association for Precision Medication (No. JY202011), Hospital Pharmaceutical Research Project of Jiangsu Pharmaceutical Association and Tianqing (No. Q2019096) and Wuxi Science and Technology Development Medical and Health Guidance Project (No. CSZ0N1809). The authors declare that they have no financial relationship with the organization that sponsored the research, and the funding body was not involved in study design, data collection, analysis and writing of the study.

Author information

Authors and Affiliations

Authors

Contributions

J-FS: wrote the manuscript. JN and X-XY: revised the manuscript. All the authors reviewed, considered and approved the manuscript. All the authors contributed substantially to the work presented in this paper, read and approved the final manuscript.

Corresponding authors

Correspondence to Jiang Ni or Xiaoxing Yin.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Ni, J. & Yin, X. The genetic side of diabetic kidney disease: a review. Int Urol Nephrol 55, 335–343 (2023). https://doi.org/10.1007/s11255-022-03319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03319-w

Keywords

Navigation