Skip to main content

Advertisement

Log in

Effect of a sodium restriction diet on albuminuria and blood pressure in diabetic kidney disease patients: a meta-analysis

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

A sodium restriction diet is a key component of chronic kidney disease (CKD) management. However, the efficacy of its use in patients with diabetic kidney disease (DKD) is uncertain. The present meta-analysis explored the effects of restricting sodium intake on albuminuria and blood pressure in DKD patients with albuminuria.

Methods

We searched the Cochrane Central Register of Controlled Trials, Web of Science, MEDLINE, and EMBASE for randomized controlled trials, and we reviewed the references of all searched articles to avoid omitting other relevant articles. Our primary endpoints were blood pressure, albumin excretion rate, and plasma renin activity. We assessed pooled data using a random-effects model.

Results

Of the 661 articles identified, a total of 12 articles were included in the meta-analysis. The random-effects model indicated that salt-restriction diet interventions led to a poled − 4.72 mmHg (95% CI − 6.71, − 2.73) difference in systolic blood pressure and that the intervention resulted in a 2.33 mmHg lower diastolic blood pressure (95% CI − 3.61, − 1.05). In patients with microalbuminuria, restricted sodium intake decreased the albumin excretion rate (AER) by 12.62 mg/min (95% CI − 19.64, − 5.60). Furthermore, the AER was 127.69 mg/min lower in patients with macroalbuminuria (95% CI − 189.07, − 66.32).

Conclusion

Moderate sodium restriction diets reduce urinary albumin excretion and decrease the level of blood pressure, especially for patients with macro-albuminuria. Thus, it is necessary to strengthen the intervention and health education as well as to provide individualized dietary advice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272. https://doi.org/10.1016/s0140-6736(13)60687-x

    Article  PubMed  Google Scholar 

  2. Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol CJASN 12(12):2032–2045. https://doi.org/10.2215/cjn.11491116

    Article  CAS  PubMed  Google Scholar 

  3. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, de Boer IH (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24(2):302–308. https://doi.org/10.1681/asn.2012070718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakris GL, Weir MR, Shanifar S, Zhang Z, Douglas J, van Dijk DJ, Brenner BM, RENAAL Study Group (2003) Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Intern Med 163(13):1555–1565. https://doi.org/10.1001/archinte.163.13.1555

    Article  PubMed  Google Scholar 

  5. de Zeeuw D (2007) Albuminuria: a target for treatment of type 2 diabetic nephropathy. Semin Nephrol 27(2):172–181. https://doi.org/10.1016/j.semnephrol.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  6. Klimontov VV, Korbut AI (2019) Albuminuric and non-albuminuric patterns of chronic kidney disease in type 2 diabetes. Diabetes Metab Syndr 13(1):474–479. https://doi.org/10.1016/j.dsx.2018.11.014

    Article  PubMed  Google Scholar 

  7. Lambers Heerspink HJ, Gansevoort RT (2015) Albuminuria is an appropriate therapeutic target in patients with CKD: the pro view. Clin J Am Soc Nephrol CJASN 10(6):1079–1088. https://doi.org/10.2215/cjn.11511114

    Article  PubMed  Google Scholar 

  8. de Borst MH, Navis G (2016) Sodium intake, RAAS-blockade and progressive renal disease. Pharmacol Res 107:344–351. https://doi.org/10.1016/j.phrs.2016.03.037

    Article  CAS  PubMed  Google Scholar 

  9. Cao W, Li A, Wang L, Zhou Z, Su Z, Bin W, Wilcox CS, Hou FF (2015) A salt-induced reno-cerebral reflex activates renin-angiotensin systems and promotes CKD progression. J Am Soc Nephrol 26(7):1619–1633. https://doi.org/10.1681/asn.2014050518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang F, Liu H, Liu D, Liu Y, Li H, Tan X, Liu F, Peng Y, Zhang H (2017) Effects of RAAS inhibitors in patients with kidney disease. Curr Hypertens Rep 19(9):72. https://doi.org/10.1007/s11906-017-0771-9

    Article  CAS  PubMed  Google Scholar 

  11. Gembillo G, Ingrasciotta Y, Crisafulli S, Luxi N, Siligato R, Santoro D, Trifirò G (2021) Kidney disease in diabetic patients: from pathophysiology to pharmacological aspects with a focus on therapeutic inertia. Int J Mol Sci. https://doi.org/10.3390/ijms22094824

    Article  PubMed  PubMed Central  Google Scholar 

  12. Giandalia A, Giuffrida AE, Gembillo G, Cucinotta D, Squadrito G, Santoro D, Russo GT (2021) Gender differences in diabetic kidney disease: focus on hormonal, genetic and clinical factors. Int J Mol Sci. https://doi.org/10.3390/ijms22115808

    Article  PubMed  PubMed Central  Google Scholar 

  13. Anders H-J, Huber TB, Isermann B, Schiffer M (2018) CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 14(6):361–377. https://doi.org/10.1038/s41581-018-0001-y

    Article  CAS  PubMed  Google Scholar 

  14. Kong YW, Baqar S, Jerums G, Ekinci EI (2016) Sodium and its role in cardiovascular disease - the debate continues. Front Endocrinol 7:164. https://doi.org/10.3389/fendo.2016.00164

    Article  Google Scholar 

  15. Luik PT, Kerstens MN, Hoogenberg K, Navis GJ, Dullaart RP (2003) Low plasma aldosterone despite normal plasma renin activity in uncomplicated type 1 diabetes mellitus: effects of RAAS stimulation. Eur J Clin Investig 33(9):787–793. https://doi.org/10.1046/j.1365-2362.2003.01215.x

    Article  CAS  Google Scholar 

  16. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ Clin Res Ed 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  Google Scholar 

  17. Ding H, Hu GL, Zheng XY, Chen Q, Threapleton DE, Zhou ZH (2015) The method quality of cross-over studies involved in Cochrane Systematic Reviews. PLoS One 10(4):e0120519. https://doi.org/10.1371/journal.pone.0120519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu SS, Sun F, Zhan SY (2017) Bias risk assessment: (3) Revised Cochrane bias risk assessment tool for individual randomized, cross-over trials (RoB2.0). Zhonghua Liu Xing Bing Xue Za Zhi Zhonghua Liuxingbingxue Zazhi 38(10):1436–1440. https://doi.org/10.3760/cma.j.issn.0254-6450.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  19. Li T, Yu T, Hawkins BS, Dickersin K (2015) Design, analysis, and reporting of crossover trials for inclusion in a meta-analysis. PLoS One 10(8):e0133023. https://doi.org/10.1371/journal.pone.0133023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trevisan R, Bruttomesso D, Vedovato M, Brocco S, Pianta A, Mazzon C, Girardi C, Jori E, Semplicini A, Tiengo A, Del Prato S (1998) Enhanced responsiveness of blood pressure to sodium intake and to angiotensin II is associated with insulin resistance in IDDM patients with microalbuminuria. Diabetes 47(8):1347–1353. https://doi.org/10.2337/diab.47.8.1347

    Article  CAS  PubMed  Google Scholar 

  21. Vedovato M, Lepore G, Coracina A, Dodesini AR, Jori E, Tiengo A, Del Prato S, Trevisan R (2004) Effect of sodium intake on blood pressure and albuminuria in Type 2 diabetic patients: the role of insulin resistance. Diabetologia 47(2):300–303. https://doi.org/10.1007/s00125-003-1303-5

    Article  CAS  PubMed  Google Scholar 

  22. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  24. Suckling RJ, He FJ, MacGregor GA (2010) Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006763.pub2

    Article  PubMed  Google Scholar 

  25. Tikellis C, Pickering RJ, Tsorotes D, Harjutsalo V, Thorn L, Ahola A, Wadén J, Tolonen N, Saraheimo M, Gordin D, Forsblom C, Groop PH, Cooper ME, Moran J, Thomas MC (2013) Association of dietary sodium intake with atherogenesis in experimental diabetes and with cardiovascular disease in patients with Type 1 diabetes. Clin Sci 124(10):617–626. https://doi.org/10.1042/cs20120352

    Article  CAS  Google Scholar 

  26. Mühlhauser I, Prange K, Sawicki PT, Bender R, Dworschak A, Schaden W, Berger M (1996) Effects of dietary sodium on blood pressure in IDDM patients with nephropathy. Diabetologia 39(2):212–219. https://doi.org/10.1007/bf00403965

    Article  PubMed  Google Scholar 

  27. Ekinci EI, Thomas G, Thomas D, Johnson C, Macisaac RJ, Houlihan CA, Finch S, Panagiotopoulos S, O’Callaghan C, Jerums G (2009) Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake. Diabetes Care 32(8):1398–1403. https://doi.org/10.2337/dc08-2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vallon V, Thomson SC (2020) The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 16(6):317–336. https://doi.org/10.1038/s41581-020-0256-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiao Y, Shin JI, Chen TK, Inker LA, Coresh J, Alexander GC, Jackson JW, Chang AR, Grams ME (2020) Association between renin-angiotensin system blockade discontinuation and all-cause mortality among persons with low estimated glomerular filtration rate. JAMA Intern Med 180(5):718–726. https://doi.org/10.1001/jamainternmed.2020.0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomlinson LA, Abel GA, Chaudhry AN, Tomson CR, Wilkinson IB, Roland MO, Payne RA (2013) ACE inhibitor and angiotensin receptor-II antagonist prescribing and hospital admissions with acute kidney injury: a longitudinal ecological study. PLoS One 8(11):e78465. https://doi.org/10.1371/journal.pone.0078465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahuja TS, Freeman D Jr, Mahnken JD, Agraharkar M, Siddiqui M, Memon A (2000) Predictors of the development of hyperkalemia in patients using angiotensin-converting enzyme inhibitors. Am J Nephrol 20(4):268–272. https://doi.org/10.1159/000013599

    Article  CAS  PubMed  Google Scholar 

  32. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ (2018) The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 98(1):505–553. https://doi.org/10.1152/physrev.00023.2016

    Article  CAS  PubMed  Google Scholar 

  33. Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345(12):870–878. https://doi.org/10.1056/NEJMoa011489

    Article  CAS  PubMed  Google Scholar 

  34. Tuomilehto J, Jousilahti P, Rastenyte D, Moltchanov V, Tanskanen A, Pietinen P, Nissinen A (2001) Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet 357(9259):848–851. https://doi.org/10.1016/s0140-6736(00)04199-4

    Article  CAS  PubMed  Google Scholar 

  35. Lin J, Hu FB, Curhan GC (2010) Associations of diet with albuminuria and kidney function decline. Clin J Am Soc Nephrol CJASN 5(5):836–843. https://doi.org/10.2215/cjn.08001109

    Article  CAS  PubMed  Google Scholar 

  36. Parvanova A, Trillini M, Podestà MA, Iliev IP, Ruggiero B, Abbate M, Perna A, Peraro F, Diadei O, Rubis N, Gaspari F, Carrara F, Stucchi N, Belviso A, Bossi AC, Trevisan R, Remuzzi G, de Borst M, Ruggenenti P (2018) Moderate salt restriction with or without paricalcitol in type 2 diabetes and losartan-resistant macroalbuminuria (PROCEED): a randomised, double-blind, placebo-controlled, crossover trial. Lancet Diabetes Endocrinol 6(1):27–40. https://doi.org/10.1016/s2213-8587(17)30359-5

    Article  CAS  PubMed  Google Scholar 

  37. Kwakernaak AJ, Krikken JA, Binnenmars SH, Visser FW, Hemmelder MH, Woittiez AJ, Groen H, Laverman GD, Navis G (2014) Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol 2(5):385–395. https://doi.org/10.1016/S2213-8587(14)70030-0

    Article  CAS  PubMed  Google Scholar 

  38. Imanishi M, Okada N, Konishi Y, Morikawa T, Maeda I, Kitabayashi C, Masada M, Shirahashi N, Wilcox CS, Nishiyama A (2012) Angiotensin II receptor blockade reduces salt sensitivity of blood pressure through restoration of renal nitric oxide synthesis in patients with diabetic nephropathy. JRAAS J Renin Angiotensin-Aldosterone Syst 14(1):67–73. https://doi.org/10.1177/1470320312454764

    Article  CAS  PubMed  Google Scholar 

  39. Houlihan CA, Allen TJ, Baxter AL, Panangiotopoulos S, Casley DJ, Cooper ME, Jerums G (2002) A low-sodium diet potentiates the effects of losartan in type 2 diabetes. Diabetes Care 25(4):663–671. https://doi.org/10.2337/diacare.25.4.663

    Article  CAS  PubMed  Google Scholar 

  40. Strojek K, Grzeszczak W, Lacka B, Gorska J, Keller CK, Ritz E (1995) Increased prevalence of salt sensitivity of blood pressure in IDDM with and without microalbuminuria. Diabetologia 38(12):1443–1448. https://doi.org/10.1007/bf00400605

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoming Xue.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exist.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, X., Jia, Y. et al. Effect of a sodium restriction diet on albuminuria and blood pressure in diabetic kidney disease patients: a meta-analysis. Int Urol Nephrol 54, 1249–1260 (2022). https://doi.org/10.1007/s11255-021-03035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-03035-x

Keywords

Navigation