Skip to main content

Advertisement

Log in

Sodium and water dynamics in the progression of chronic kidney disease: mechanisms and clinical significance

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Aim

Lifestyle modifications can postpone the progression of chronic kidney disease toward its terminal stage. This mini-review aims to explore the impact of salt and water intake on the progression of chronic kidney disease (CKD) and provide insights into the optimal consumption levels to preserve the glomerular filtration rate.

Methods

We reviewed relevant literature to examine the association between salt and water consumption and CKD progression. Our analysis includes discussions on the pathophysiology, findings from clinical trials, and recommended intake guidelines.

Results

Sodium intake, often linked to cardiovascular risk and CKD progression, has shown a complex J-shaped association in some studies, leading to uncertainty about the ideal salt intake level. Sodium and fluid retention are key factors contributing to hypertension, a well-established risk factor for CKD progression. Low-sodium diets have demonstrated promise in reducing blood pressure and enhancing the effects of renin–angiotensin–aldosterone system inhibitors in non-dialysis CKD patients. However, a debate persists regarding the independent effect of salt restriction on CKD progression. Despite medical recommendations, salt consumption remains high among CKD patients. Additionally, the role of water consumption in CKD remains controversial despite its established benefits for CKD prevention in the general population.

Conclusion

Lifestyle modifications involving salt and water intake can influence the progression of CKD. While low-sodium diets have shown potential for mitigating hypertension and proteinuria in non-dialysis CKD patients, their independent impact on CKD progression warrants further investigation. The role of water consumption in CKD remains uncertain, and there is a need for additional research in this area. Clinicians should consider individualized dietary recommendations for CKD patients to help preserve the glomerular filtration rate and improve overall outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Salt: From a Russian Folktale Jane Langton, Alse Plume. Hyperion Books, ISBN 978–1–56282–178–4

  2. Cengiz ÃM, Karabulut S (2020) The role of salt on food and human health. Salt Earth. https://doi.org/10.5772/intechopen.86905

    Article  Google Scholar 

  3. Levinson SR, Luo S, Henry MA (2012) The role of sodium channels in chronic pain. Muscle Nerve 46(2):155–165. https://doi.org/10.1002/mus.23314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang C, Huang Z, Yu K, Ding R, Ye K, Dai C, Xu X, Zhou G, Li C (2017) High-Salt Diet has a certain impact on protein digestion and gut microbiota: a sequencing and proteome combined study. Front Microbiol 8:1838. https://doi.org/10.3389/fmicb.2017.01838

    Article  PubMed  PubMed Central  Google Scholar 

  5. Agócs R, Sugár D, Szabó AJ (2020) Is too much salt harmful? yes. Pediatr Nephrol (Berlin, Germany) 35(9):1777–1785. https://doi.org/10.1007/s00467-019-04387-4

    Article  Google Scholar 

  6. Canaud B, Kooman J, Selby NM, Taal M, Francis S, Kopperschmidt P, Maierhofer A, Kotanko P, Titze J (2019) Sodium and water handling during hemodialysis: new pathophysiologic insights and management approaches for improving outcomes in end-stage kidney disease. Kidney Int 95(2):296–309. https://doi.org/10.1016/j.kint.2018.09.024

    Article  CAS  PubMed  Google Scholar 

  7. Schrauben SJ, Apple BJ, Chang AR (2022) Modifiable lifestyle behaviors and CKD progression: a narrative review. Kidney 3(4):752–778. https://doi.org/10.34067/KID.0003122021

    Article  Google Scholar 

  8. Kotchen TA, Cowley AW, Frohlich ED (2013) Salt in health and disease–a delicate balance. N Engl J Med 368(13):1229–1237. https://doi.org/10.1056/NEJMra1212606. (PMID: 23534562)

    Article  CAS  PubMed  Google Scholar 

  9. Bibbins-Domingo K, Chertow GM, Coxson PG, Moran A, Lightwood JM, Pletcher MJ, Goldman L (2010) Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 362(7):590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borrelli S, Provenzano M, Gagliardi I, Michael A, Liberti ME, De Nicola L, Conte G, Garofalo C, Andreucci M (2020) Sodium intake and chronic kidney disease. Int J Mol Sci 21(13):4744. https://doi.org/10.3390/ijms21134744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karras A, Haymann JP, Bozec E, Metzger M, Jacquot C, Maruani G, Houillier P, Froissart M, Stengel B, Guardiola P, Laurent S, Boutouyrie P, Briet M, Nephro Test Study Group (2012) Large artery stiffening and remodeling are independently associated with all-cause mortality and cardiovascular events in chronic kidney disease. Hypertension 60(6):1451–1457

    Article  CAS  PubMed  Google Scholar 

  12. Pannier B, Guérin AP, Marchais SJ, Safar ME, London GM (2005) Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension 45(4):592–596

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell GF (2014) Arterial stiffness and hypertension: chicken or egg? Hypertension 64(2):210–214

    Article  CAS  PubMed  Google Scholar 

  14. Maki KC, Wilcox ML, Dicklin MR, Kakkar R, Davidson MH (2022) Left ventricular mass regression, all-cause and cardiovascular mortality in chronic kidney disease: a meta-analysis. BMC Nephrol 23(1):34. https://doi.org/10.1186/s12882-022-02666-1.PMID:35034619;PMCID:PMC8761349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strom BL, Yaktine AL, Oria M, (2013). Washington (DC): National Academies Press (US). Committee on the Consequences of Sodium Reduction in Populations; Food and Nutrition Board; Board on Population Health and Public Health Practice; Institute of Medicine. Sodium Intake in Populations: Assessment of Evidence .

  16. Krikken JA, Laverman GD, Navis G (2009) Benefits of dietary sodium restriction in the management of chronic kidney disease. Curr Opin Nephrol Hypertens 18(6):531–538

    Article  CAS  PubMed  Google Scholar 

  17. Kutlugün AA, Arıcı M, Yıldırım T, Turgut D, Yılmaz R, Altındal M, Altun B, Erdem Y, Yasavul U, Turgan C (2011) Daily sodium intake in chronic kidney disease patients during nephrology clinic follow-up: an observational study with 24-hour urine sodium measurement. Nephron Clin Pract 118(4):c361-366

    Article  PubMed  Google Scholar 

  18. Wagner S, Merkling T, Metzger M, Bankir L, Laville M, Frimat L, Combe C, Jacquelinet C, Fouque D, Massy ZA, Stengel B, CKD-REIN study group, (2022) Water intake and progression of chronic kidney disease: the CKD-REIN cohort study. Nephrol Dial Transplant 37(4):730–739. https://doi.org/10.1093/ndt/gfab036. (PMID: 33576809)

    Article  CAS  PubMed  Google Scholar 

  19. Titze J, Maillet A, Lang R, Gunga HC, Johannes B, Gauquelin-Koch G, Kihm E, Larina I, Gharib C, Kirsch KA (2002) Long-term sodium balance in humans in a terrestrial space station simulation study. Am J Kidney Dis 40:508–516. https://doi.org/10.1053/ajkd.2002.34908

    Article  CAS  PubMed  Google Scholar 

  20. Olde Engberink RH, Rorije NM, van den Born BH, Vogt L (2017) Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int 91:738–745. https://doi.org/10.1016/j.kint.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  21. Wenstedt EFE, Olde Engberink RHG, Vogt L (2018) Sodium Handling by the Blood Vessel Wall: Critical for Hypertension Development. Hypertension 71(6):990–996. https://doi.org/10.1161/HYPERTENSIONAHA.118.10211

    Article  CAS  PubMed  Google Scholar 

  22. Farber SJ, Schubert M, Schuster N (1957) The binding of cations by chondroitin sulfate. J Clin Invest 36:1715–1722. https://doi.org/10.1172/JCI103573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kusche-Vihrog K, Jeggle P, Oberleithner H (2014) The role of ENaC in vascular endothelium. Pflugers Arch 466:851–859. https://doi.org/10.1007/s00424-013-13563

    Article  CAS  PubMed  Google Scholar 

  24. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, Dietsch P, Hilgers KF (2004) Glycosaminoglycan polym-erization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol 287:H203–H208. https://doi.org/10.1152/ajpheart.01237.2003

    Article  CAS  PubMed  Google Scholar 

  25. Foss JD, Kirabo A, Harrison DG (2017) Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol 312:R1–R4. https://doi.org/10.1152/ajpregu.00414.2016

    Article  PubMed  Google Scholar 

  26. Rorije NMG, Olde Engberink RHG, Chahid Y, van Vlies N, van Straalen

  27. van den Born BH, Verberne HJ, Vogt L (2017) Microvascular permeability after an acute and chronic salt load in healthy subjects: a randomized 43. open-label crossover intervention study. Anesthesiology 128:352–360. https://doi.org/10.1097/ALN.0000000000001989

    Article  CAS  Google Scholar 

  28. Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW (2007) Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 18(11):2885–2893. https://doi.org/10.1681/ASN.2007010119

    Article  CAS  PubMed  Google Scholar 

  29. Salmon AH, Ferguson JK, Burford JL, Gevorgyan H, Nakano D, Harper SJ, Bates DO, Peti-Peterdi J (2012) Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 23(8):1339–1350. https://doi.org/10.1681/ASN.2012010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H (2012) Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol 23:1900–1908. https://doi.org/10.1681/ASN.2011121181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, Schlingemann RO, Nieuwdorp M, Stroes ES, Vink H (2010) Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53:2646–2655. https://doi.org/10.1007/s00125-010-1910-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JA, Ince C, Holleman F, Diamant M, Heine RJ, Hoekstra JB, Kastelein JJ, Stroes ES, Vink H (2006) Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55(4):1127–1132. https://doi.org/10.2337/diabetes.55.04.06.db05-1619. (PMID: 16567538)

    Article  CAS  PubMed  Google Scholar 

  33. Oberleithner H, Wilhelmi M (2015) Vascular glycocalyx sodium store– determinant of salt sensitivity? Blood Purif 39:7–10. https://doi.org/10.1159/000368922

    Article  CAS  PubMed  Google Scholar 

  34. Lemoine S, Salerno FR, Akbari A, McKelvie RS, McIntyre CW (2021) Tissue sodium storage in patients with heart failure: a new therapeutic target? Circ Cardiovasc Imaging 14(11):e012910. https://doi.org/10.1161/CIRCIMAGING.121.012910. (Epub 2021 Nov 16 PMID: 34784242)

    Article  PubMed  Google Scholar 

  35. Dahlmann A, Dörfelt K, Eicher F, Linz P, Kopp C, Mössinger I, Horn S, Büschges-Seraphin B, Wabel P, Hammon M, Cavallaro A, Eckardt KU, Kotanko P, Levin NW, Johannes B, Uder M, Luft FC, Müller DN, Titze JM (2015) Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int 87:434–441. https://doi.org/10.1038/ki.2014.269

    Article  CAS  PubMed  Google Scholar 

  36. Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schöfl C, Renz W, Santoro D, Niendorf T, Müller DN, Neininger M, Cavallaro A, Eckardt KU, Schmieder RE, Luft FC, Uder M, Titze J (2012) Na magnetic resonance imaging of tissue sodium. Hypertensiion 59:167–172. https://doi.org/10.1161/HYPERTENSIONAHA.111.183517

    Article  CAS  Google Scholar 

  37. Padberg JS, Wiesinger A, di Marco GS, Reuter S, Grabner A, Kentrup D, Lukasz A, Oberleithner H, Pavenstädt H, Brand M, Kümpers P (2014) Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234(2):335–343. https://doi.org/10.1016/j.atherosclerosis.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  38. Dane MJ, Khairoun M, Lee DH, van den Berg BM, Eskens BJ, Boels MG, van Teeffelen JW, Rops AL, van der Vlag J, van Zonneveld AJ, Reinders ME, Vink H, Rabelink TJ (2014) Association of kidney function with changes in the endothelial surface layer. Clin J Am Soc Nephrol 9(4):698–704. https://doi.org/10.2215/CJN.08160813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lemoine S, Salerno F, Akbari A, McKelvie R, McIntyre Ch (2021) Tissue sodium storage in patients with heart failure: a new therapeutic target? Circ Cardiovasc Imaging 14:e012910. https://doi.org/10.1161/CIRCIMAGING.121.012910

    Article  PubMed  Google Scholar 

  40. Kopp C, Scheppach JB, Toncar S, Wanner C, Schlieper G, Saritas T, Floege J, Schmid M, Birukov A, Dahlmann A, Linz P, Janka R, Uder M, Schmieder RE, Titze JM, Eckardt KU (2017) Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol 28:1867–1876. https://doi.org/10.1681/ASN.2016060662

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium bar- rier of vascular endothelium. Pflugers Arch 462:519–528. https://doi.org/10.1007/s00424-011-0999-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korte S, Wiesinger A, Straeter AS, Peters W, Oberleithner H, Kusche-Vihrog K (2012) Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pflugers Arch 463:269–278. https://doi.org/10.1007/s00424-011-1038-y

    Article  CAS  PubMed  Google Scholar 

  43. Selvarajah V, Maki-Petaja KM, Pedro L, Bruggraber SFA, Burling K, Goodhart AK, Brown MJ, McEniery CM, Wilkinson IB (2017) Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor C, and blood pressure. Hypertension 70:930–937. https://doi.org/10.1161/HYPERTENSIONAHA.117.10003

    Article  CAS  PubMed  Google Scholar 

  44. Schafflhuber M, Volpi N, Dahlmann A, Hilgers KF, Maccari F, Dietsch P, Wagner H, Luft FC, Eckardt KU, Titze J (2007) Mobilization of osmotically inac- tive Na+ by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol 292:F1490–F1500. https://doi.org/10.1152/ajprenal.00300.2006

    Article  CAS  PubMed  Google Scholar 

  45. Guyton AC (1992) Kidneys and fluids in pressure regulation. small volume but large pressure changes. Hypertension 19(1):2–8. https://doi.org/10.1161/01.hyp.19.1_suppl.i2

    Article  Google Scholar 

  46. Koomans HA, Roos JC, Dorhout Mees EJ, Delawi IM (1985) Sodium balance in renal failure. a comparison of patients with normal subjects under extremes of sodium intake. Hypertension 7(5):714–721. https://doi.org/10.1161/01.hyp.7.5.714. (PMID: 3897045)

    Article  CAS  PubMed  Google Scholar 

  47. Chang AR, Lóser M, Malhotra R, Appel LJ (2019) Blood pressure goals in patients with CKD: a review of evidence and guidelines. Clin J Am Soc Nephrol 14(1):161–169. https://doi.org/10.2215/CJN.07440618

    Article  CAS  PubMed  Google Scholar 

  48. Laurent S, Boutouyrie P (2015) The structural factor of hypertension: large and small artery alterations. Circ Res 116(6):1007–1021. https://doi.org/10.1161/CIRCRESAHA.116.303596. (PMID: 25767286)

    Article  CAS  PubMed  Google Scholar 

  49. Bernardi S, Toffoli B, Zennaro C, Tikellis C, Monticone S, Losurdo P, Bellini G, Thomas MC, Fallo F, Veglio F, Johnston CI, Fabris B (2011) High-salt diet increases glomerular ACE/ACE2 ratio leading to oxidative stress and kidney damage. Nephrol Dial Transplant 27(5):1793–1800. https://doi.org/10.1093/ndt/gfr600. (PMID: 22036945)

    Article  CAS  PubMed  Google Scholar 

  50. Habibi J, Hayden MR, Ferrario CM, Sowers JR, Whaley-Connell AT (2014) Salt loading promotes kidney injury via fibrosis in young female Ren2 rats. Cardiorenal Med. https://doi.org/10.1159/000360866.PMID:24847333;PMCID:PMC4025048

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krikken JA, Lely AT, Bakker SJ, Navis G (2007) The effect of a shift in sodium intake on renal hemodynamics is determined by body mass index in healthy young men. Kidney Int 71(3):260–265

    Article  CAS  PubMed  Google Scholar 

  52. Fujiwara S, Kotani K, Brantley PJ, Tsuzaki K, Matsuoka Y, Domichi M, Sano Y, Kajii E, Sakane N (2010) Dietary salt reduction in rural patients with albuminurea using family and community support: the Mima study. Asia Pac Fam Med 9(1):6. https://doi.org/10.1186/1447-056X-9-6.PMID:20184743;PMCID:PMC2843601

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pimenta E, Gaddam KK, Pratt-Ubunama MN, Nishizaka MK, Aban I, Oparil S, Calhoun DA (2008) Relation of dietary salt and aldosterone to urinary protein excretion in subjects with resistant hypertension. Hypertension 51(2):339–344. https://doi.org/10.1161/HYPERTENSIONAHA.107.100701. (PMID: 18086955)

    Article  CAS  PubMed  Google Scholar 

  54. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T (2007) Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49(2):355–364. https://doi.org/10.1161/01.HYP.0000255636.11931.a2. (PMID: 17200434)

    Article  CAS  PubMed  Google Scholar 

  55. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T (2006) Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47(6):1084–1093. https://doi.org/10.1161/01.HYP.0000222003.28517.99. (PMID: 16636193)

    Article  CAS  PubMed  Google Scholar 

  56. Duprez DA (2007) Aldosterone and the vasculature: mechanisms mediating resistant hypertension. J Clin Hypertens (Greenwich) 9(1 Suppl 1):13–18. https://doi.org/10.1111/j.1524-6175.2007.06367.x.PMID:17215650;PMCID:PMC8110152

    Article  CAS  PubMed  Google Scholar 

  57. Duprez DA (2006) Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens 24(6):983–991. https://doi.org/10.1097/01.hjh.0000226182.60321.69. (PMID: 16685192)

    Article  CAS  PubMed  Google Scholar 

  58. Slagman MC, Waanders F, Hemmelder MH, Woittiez AJ, Janssen WM, Lambers Heerspink HJ, Navis G, Laverman GD, HOlland NEphrology STudy Group (2011) Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ 343:d4366. https://doi.org/10.1136/bmj.d4366. (PMID:21791491;PMCID:PMC3143706)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Navis G, de Jong PE, Donker AJ, van der Hem GK, de Zeeuw D (1987) Moderate sodium restriction in hypertensive subjects: renal effects of ACE-inhibition. Kidney Int 31(3):815–819. https://doi.org/10.1038/ki.1987.71. (PMID: 3033389)

    Article  CAS  PubMed  Google Scholar 

  60. Kolmakova EV, Haller ST, Kennedy DJ, Isachkina AN, Budny GV, Frolova EV, Piecha G, Nikitina ER, Malhotra D, Fedorova OV, Shapiro JI, Bagrov AY (2011) Endogenous cardiotonic steroids in chronic renal failure. Nephrol Dial Transplant 26(9):2912–2919. https://doi.org/10.1093/ndt/gfq772.PMID:21292813;PMCID:PMC3203407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cohen HW, Hailpern SM, Fang J, Alderman MH (2006) Sodium intake and mortality in the NHANES II follow-up study. Am J Med 119(3):275.e7–14. https://doi.org/10.1016/j.amjmed.2005.10.042. (PMID: 16490476)

    Article  PubMed  Google Scholar 

  62. Investigators ONTARGET, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358(15):1547–1559. https://doi.org/10.1056/NEJMoa0801317. (PMID: 18378520)

    Article  Google Scholar 

  63. Telmisartan Randomised AssessmeNt Study in ACE iN tolerant subjects with cardiovascular Disease (TRANSCEND) Investigators, Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P (2008) Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet 372(9644):1174–1183. https://doi.org/10.1016/S0140-6736(08)61242-8. (Erratum in: Lancet. 2008 Oct 18;372(9647):1384. PMID: 18757085. 27;372(9644):1174–83)

    Article  CAS  Google Scholar 

  64. Vegter S, Perna A, Postma MJ, Navis G, Remuzzi G, Ruggenenti P (2012) Sodium intake, ACE inhibition, and progression to ESRD. J Am Soc Nephrol 23(1):165–173

    Article  CAS  PubMed  Google Scholar 

  65. Ohta Y, Tsuchihashi T, Kiyohara K, Oniki H (2013) High salt intake promotes a decline in renal function in hypertensive patients: a 10-year observational study. Hypertens Res 36(2):172–176

    Article  CAS  PubMed  Google Scholar 

  66. Kwakernaak AJ, Krikken JA, Binnenmars SH, Visser FW, Hemmelder MH, Woittiez AJ, Groen H, Laverman GD, Navis G, Holland Nephrology Study (HONEST) Group (2014) Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol 2(5):385–395

    Article  CAS  PubMed  Google Scholar 

  67. de Brito-Ashurst I, Perry L, Sanders TA, Thomas JE, Dobbie H, Varagunam M, Yaqoob MM (2013) The role of salt intake and salt sensitivity in the management of hypertension in South Asian people with chronic kidney disease: a randomised controlled trial. Heart 99(17):1256–1260

    Article  PubMed  Google Scholar 

  68. McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, Campbell KL (2013) A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol 24(12):2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu W, Luying S, Haiyan W, Xiaomei L (2012) Importance and benefits of dietary sodium Restriction in the management of chronic kidney disease patients: experience from a single Chinese center. Int Urol Nephrol 44(2):549–556

    Article  PubMed  Google Scholar 

  70. Saran R, Padilla RL, Gillespie BW, Heung M, Hummel SL, Derebail VK, Pitt B, Levin NW, Zhu F, Abbas SR, Liu L, Kotanko P, Klemmer PA (2017) Randomized crossover trial of dietary sodium restriction in stage 3–4 CKD. Clin J Am Soc Nephrol 12(3):399–407. https://doi.org/10.2215/CJN.01120216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. He J, Mills KT, Appel LJ, Yang W, Chen J, Lee BT, Rosas SE, Porter A, Makos G, Weir MR, Hamm LL, Kusek JW (2016) Urinary sodium and potassium excretion and CKD progression. J Am Soc Nephrol 27(4):1202–1212. https://doi.org/10.1681/ASN.2015010022

    Article  CAS  PubMed  Google Scholar 

  72. Kang M, Kang E, Ryu H, Hong Y, Han SS, Park SK, Hyun YY, Sung SA, Kim SW, Yoo TH, Kim J, Ahn C, Oh KH (2021) Measured sodium excretion is associated with CKD progression: results from the KNOW-CKD study. Nephrol Dial Transplant 36(3):512–519. https://doi.org/10.1093/ndt/gfaa107. (PMID: 32582942)

    Article  CAS  PubMed  Google Scholar 

  73. Kim HJ, Jung C-Y, Kim HW, Park JT, Yoo T-H, Kang S-W, Park SK, Kim YH, Sung SuAh, Hyun YY, Kook-Hwan Oh, Han SH (2023) Proteinuria modifies the relationship between urinary sodium excretion and adverse kidney outcomes: findings from KNOW-CKD. Kidney Int Rep 8(5):1022–1033. https://doi.org/10.1016/j.ekir.2023.02.1078

    Article  PubMed  PubMed Central  Google Scholar 

  74. Torres VE, Abebe KZ, Schrier RW, Perrone RD, Chapman AB, Yu AS, Braun WE, Steinman TI, Brosnahan G, Hogan MC, Rahbari FF, Grantham JJ, Bae KT, Moore CG, Flessner MF (2017) Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease. Kidney Int 91(2):493–500. https://doi.org/10.1016/j.kint.2016.10.018.PMID:27993381;PMCID:PMC5237414

    Article  CAS  PubMed  Google Scholar 

  75. Shi H, Su X, Li C et al (2022) Effect of a low-salt diet on chronic kidney disease outcomes: a systematic review and meta-analysis. BMJ Open 12:e050843. https://doi.org/10.1136/bmjopen-2021-050843

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ikizler TA, Burrowes JD, Byham-Gray LD et al (2020) KDOQI nutrition in CKD guideline work group KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am J Kidney Dis 76(3):1–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group.

  78. KDIGO (2021) clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int 99(3S):S1–S87

    Google Scholar 

  79. Jain N, Reilly RF (2014) Effects of dietary interventions on incidence and progression of CKD. Nat Rev Nephrol 10(12):712–724

    Article  CAS  PubMed  Google Scholar 

  80. Dunford E, Webster J, Woodward M et al (2012) The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction. CMAJ 184(9):1023–1028

    Article  PubMed  PubMed Central  Google Scholar 

  81. Strippoli GF, Craig JC, Rochtchina E, Flood VM, Wang JJ, Mitchell P (2011) Fluid and nutrient intake and risk of chronic kidney disease. Nephrology (Carlton) 16(3):326–334

    Article  PubMed  Google Scholar 

  82. Clark WF, Sontrop JM, Macnab JJ, Suri RS, Moist L, Salvadori M, Garg AX (2011) Urine volume and change in estimated GFR in a community-based cohort study. Clin J Am Soc Nephrol 6(11):2634–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kovesdy CP, Lott EH, Lu JL, Malakauskas SM, Ma JZ, Molnar MZ, Kalantar-Zadeh K (2012) Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation 125(5):677–684

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bolignano D, Zoccali C (2010) Vasopressin beyond water: implications for renal diseases. Curr Opin Nephrol Hypertens 19(5):499–504. https://doi.org/10.1097/MNH.0b013e32833d35cf

    Article  CAS  PubMed  Google Scholar 

  85. Essig M, Escoubet B, de Zuttere D, Blanchet F, Arnoult F, Dupuis E, Michel C, Mignon F, Mentre F, Clerici C, Vrtovsnik F (2008) Cardiovascular remodelling and extracellular fluid excess in early stages of chronic kidney disease. Nephrol Dial Transplant 23(1):239–248

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, NS and MR; NS and M.R writing—original draft preparation; AI, MB and GS writing—review and editing; NS, MR, AI, MB, GS visualization, MB and GS supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nereida Spahia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

NA (The manuscript is a review and do not need ethic approval statement).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spahia, N., Rroji, M., Idrizi, A. et al. Sodium and water dynamics in the progression of chronic kidney disease: mechanisms and clinical significance. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-023-03903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-023-03903-8

Keywords

Navigation