Skip to main content

Advertisement

Log in

A1AR-mediated renal protection against ischemia/reperfusion injury is dependent on HSP27 induction

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

A1 adenosine receptor (AR) activation has been demonstrated to attenuate renal ischemia/reperfusion injury (IRI), but the exact mechanism of this protection remains to be well elucidated.

Methods

Male C57BL/6 mice were used in the present study. Expression of heat shock protein (HSP) 27 and HSF-1 were detected using western blot analysis. An RNA interference with adenovirus vector using short hairpin RNA targeting HSP27 was developed. Together with renal IRI model, indicators of renal function, acute tubular necrosis, inflammation and apoptosis were measured in kidneys after 24-h reperfusion.

Results

We found activation of A1AR stimulated induction of HSP27 and its major transcriptional factor HSF-1. It was observed that renal inhibition of HSP27 abolished the renoprotective effects afforded by A1AR activation indicated by worse renal function, severer acute tubular necrosis and pro-inflammatory reaction. In addition, HSP27 induction by A1AR activation protects the kidney from IRI via suppressing cell apoptosis, proved by decreased caspase-3 activation and DNA fragmentation, which was also removed by inhibition of HSP27.

Conclusions

Activation of A1AR produces renoprotective effects via HSP27 induction. It suggests that preconditional HSP27 activation might have a great potential for the treatment of renal IRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Safian RD, Textor SC (2001) Renal-artery stenosis. N Engl J Med 344(6):431–442. https://doi.org/10.1056/NEJM200102083440607

    Article  PubMed  CAS  Google Scholar 

  2. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351(2):159–169. https://doi.org/10.1056/NEJMra032401351/2/159

    Article  PubMed  CAS  Google Scholar 

  3. Kelly KJ, Molitoris BA (2000) Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol 20(1):4–19

    PubMed  CAS  Google Scholar 

  4. Sheridan AM, Bonventre JV (2001) Pathophysiology of ischemic acute renal failure. Contrib Nephrol 132:7–21

    Article  CAS  Google Scholar 

  5. Lafrance JP, Miller DR (2010) Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol 21(2):345–352. https://doi.org/10.1681/ASN.2009060636

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365(9457):417–430. https://doi.org/10.1016/S0140-6736(05)17831-3

    Article  PubMed  CAS  Google Scholar 

  7. Joo JD, Kim M, Horst P, Kim J, D’Agati VD, Emala CW Sr, Lee HT (2007) Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors. Am J Physiol Renal Physiol 293(6):F1847–F1857. https://doi.org/10.1152/ajprenal.00336.2007

    Article  PubMed  CAS  Google Scholar 

  8. Lee HT, Gallos G, Nasr SH, Emala CW (2004) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia–reperfusion injury in mice. J Am Soc Nephrol JASN 15(1):102–111

    Article  PubMed  CAS  Google Scholar 

  9. Lee HT, Kim M, Jan M, Penn RB, Emala CW (2007) Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression. Kidney Int 71(12):1249–1261. https://doi.org/10.1038/sj.ki.5002227

    Article  PubMed  CAS  Google Scholar 

  10. Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis Int J Program Cell Death 8(1):61–70

    Article  CAS  Google Scholar 

  11. Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci CMLS 66(20):3289–3307. https://doi.org/10.1007/s00018-009-0086-3

    Article  PubMed  CAS  Google Scholar 

  12. Kim M, Park SW, Chen SW, Gerthoffer WT, D’Agati VD, Lee HT (2010) Selective renal overexpression of human heat shock protein 27 reduces renal ischemia–reperfusion injury in mice. Am J Physiol Renal Physiol 299(2):F347–F358. https://doi.org/10.1152/ajprenal.00194.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhang S, Han CH, Chen XS, Zhang M, Xu LM, Zhang JJ, Xia Q (2012) Transient ureteral obstruction prevents against kidney ischemia/reperfusion injury via hypoxia-inducible factor (HIF)-2α activation. PLoS ONE 7(1):e29876. https://doi.org/10.1371/journal.pone.0029876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chatterjee PK, Thiemermann C (2003) An in vivo model of ischemia/reperfusion and inflammation of the kidneys of the rat. Methods Mol Biol 225:223–237. https://doi.org/10.1385/1-59259-374-7:223

    Article  PubMed  CAS  Google Scholar 

  15. Chatterjee PK, Patel NS, Kvale EO, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Thiemermann C (2002) Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int 61(3):862–871. https://doi.org/10.1046/j.1523-1755.2002.00234.x

    Article  PubMed  CAS  Google Scholar 

  16. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18(21):5943–5952. https://doi.org/10.1093/emboj/18.21.5943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Donnahoo KK, Shames BD, Harken AH, Meldrum DR (1999) Review article: the role of tumor necrosis factor in renal ischemia–reperfusion injury. J Urol 162(1):196–203. https://doi.org/10.1097/00005392-199907000-00068

    Article  PubMed  CAS  Google Scholar 

  18. Burne-Taney MJ, Kofler J, Yokota N, Weisfeldt M, Traystman RJ, Rabb H (2003) Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am J Physiol Renal Physiol 285(1):F87–F94. https://doi.org/10.1152/ajprenal.00026.2003

    Article  PubMed  CAS  Google Scholar 

  19. Loverre A, Ditonno P, Crovace A, Gesualdo L, Ranieri E, Pontrelli P, Stallone G, Infante B, Schena A, Di Paolo S, Capobianco C, Ursi M, Palazzo S, Battaglia M, Selvaggi FP, Schena FP, Grandaliano G (2004) Ischemia–reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J Am Soc Nephrol JASN 15(10):2675–2686. https://doi.org/10.1097/01.ASN.0000139932.00971.E4

    Article  PubMed  CAS  Google Scholar 

  20. Patel NS, Chatterjee PK, Di Paola R, Mazzon E, Britti D, De Sarro A, Cuzzocrea S, Thiemermann C (2005) Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther 312(3):1170–1178. https://doi.org/10.1124/jpet.104.078659

    Article  PubMed  CAS  Google Scholar 

  21. Hirano S, Rees RS, Yancy SL, Welsh MJ, Remick DG, Yamada T, Hata J, Gilmont RR (2004) Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 20(1):1–14

    Article  PubMed  CAS  Google Scholar 

  22. Howard TK, Klintmalm GB, Cofer JB, Husberg BS, Goldstein RM, Gonwa TA (1990) The influence of preservation injury on rejection in the hepatic transplant recipient. Transplantation 49(1):103–107

    Article  PubMed  CAS  Google Scholar 

  23. Hansen PB, Hashimoto S, Oppermann M, Huang Y, Briggs JP, Schnermann J (2005) Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther 315(3):1150–1157. https://doi.org/10.1124/jpet.105.091017

    Article  PubMed  CAS  Google Scholar 

  24. Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86(3):901–940. https://doi.org/10.1152/physrev.00031.2005

    Article  PubMed  CAS  Google Scholar 

  25. Yap SC, Lee HT (2012) Adenosine and protection from acute kidney injury. Curr Opin Nephrol Hypertens 21(1):24–32. https://doi.org/10.1097/MNH.0b013e32834d2ec9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Irazu CE, Ruidera E, Singh I, Orak JK, Fitts CT, Rajagopalan PR (1989) Effect of ischemia and 24 hour reperfusion on ATP synthesis in the rat kidney. J Exp Pathol 4(1):29–36

    PubMed  CAS  Google Scholar 

  27. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC, Colgan SP (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104(13):3986–3992. https://doi.org/10.1182/blood-2004-06-2066

    Article  PubMed  CAS  Google Scholar 

  28. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, Schonfeld C, Loffler M, Reyes G, Duszenko M, Karhausen J, Robinson A, Westerman KA, Coe IR, Colgan SP (2005) HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202(11):1493–1505. https://doi.org/10.1084/jem.20050177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhao ZQ, Nakanishi K, McGee DS, Tan P, Vinten-Johansen J (1994) A1 receptor mediated myocardial infarct size reduction by endogenous adenosine is exerted primarily during ischaemia. Cardiovasc Res 28(2):270–279

    Article  PubMed  CAS  Google Scholar 

  30. Narayan P, Mentzer RM Jr, Lasley RD (2001) Adenosine A1 receptor activation reduces reactive oxygen species and attenuates stunning in ventricular myocytes. J Mol Cell Cardiol 33(1):121–129. https://doi.org/10.1006/jmcc.2000.1282

    Article  PubMed  CAS  Google Scholar 

  31. Phillis JW (1995) The effects of selective A1 and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 705(1–2):79–84

    Article  PubMed  CAS  Google Scholar 

  32. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13(14):2061–2070

    Article  PubMed  CAS  Google Scholar 

  33. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9):645–652. https://doi.org/10.1038/35023595

    Article  PubMed  CAS  Google Scholar 

  34. Arrigo AP, Firdaus WJ, Mellier G, Moulin M, Paul C, Diaz-latoud C, Kretz-remy C (2005) Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods 35(2):126–138. https://doi.org/10.1016/j.ymeth.2004.08.003

    Article  PubMed  CAS  Google Scholar 

  35. Park SW, Chen SW, Kim M, D’Agati VD, Lee HT (2009) Human heat shock protein 27-overexpressing mice are protected against acute kidney injury after hepatic ischemia and reperfusion. Am J Physiol Renal Physiol 297(4):F885–F894. https://doi.org/10.1152/ajprenal.00317.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen SW, Park SW, Kim M, Brown KM, D’Agati VD, Lee HT (2009) Human heat shock protein 27 overexpressing mice are protected against hepatic ischemia and reperfusion injury. Transplantation 87(10):1478–1487. https://doi.org/10.1097/TP.0b013e3181a3c691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR (1999) Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia–reperfusion. Am J Physiol 277(3 Pt 2):R922–R929

    PubMed  CAS  Google Scholar 

  38. Zager RA, Johnson AC, Becker K (2011) Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and “end-stage” kidney disease. Am J Physiol Renal Physiol 301(6):F1334–F1345. https://doi.org/10.1152/ajprenal.00431.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Amura CR, Renner B, Lyubchenko T, Faubel S, Simonian PL, Thurman JM (2012) Complement activation and toll-like receptor-2 signaling contribute to cytokine production after renal ischemia/reperfusion. Mol Immunol 52(3–4):249–257. https://doi.org/10.1016/j.molimm.2012.05.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Heinzelmann M, Mercer-Jones MA, Passmore JC (1999) Neutrophils and renal failure. Am J Kidney Dis 34(2):384–399. https://doi.org/10.1053/AJKD03400384

    Article  PubMed  CAS  Google Scholar 

  41. Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Investig 97(4):1056–1063. https://doi.org/10.1172/JCI118498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15(10):1562–1574

    Article  PubMed  CAS  Google Scholar 

  43. Daemen MA, de Vries B, Buurman WA (2002) Apoptosis and inflammation in renal reperfusion injury. Transplantation 73(11):1693–1700

    Article  PubMed  CAS  Google Scholar 

  44. Daemen MA, van’t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA (1999) Inhibition of apoptosis induced by ischemia–reperfusion prevents inflammation. J Clin Investig 104(5):541–549. https://doi.org/10.1172/JCI6974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ganachari N, Kaur P, Asea A (2012) Role of Human and Mouse HspB1 in Metastasis. Curr Mol Med 12(9):1142–1150

    Article  Google Scholar 

Download references

Funding

This study was supported by the Guangxi Province Project of Development and Application of Appropriate Medical Technology (No. S201645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Han.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, B., Li, M., Xiang, S. et al. A1AR-mediated renal protection against ischemia/reperfusion injury is dependent on HSP27 induction. Int Urol Nephrol 50, 1355–1363 (2018). https://doi.org/10.1007/s11255-018-1797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1797-x

Keywords

Navigation