Skip to main content

Advertisement

Log in

LPS ameliorates renal ischemia/reperfusion injury via Hsp27 up-regulation

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

We have recently reported lipopolysaccharide (LPS) pretreatment attenuated renal ischemia/reperfusion injury (IRI), but the exact mechanism remains to be well elucidated. It was reported that heat shock protein (Hsp) 27 was up-regulated after administration of LPS, but whether a direct link existed between Hsp27 up-regulation and LPS-induced protection against renal IRI is still unknown.

Methods

Mice were exposed to IRI or sham procedure, with pretreatment of LPS or not. Quercetin, an inhibitor of Hsp27 synthesis, was used, and an RNA interference with adenovirus vector using short hairpin RNA targeting Hsp27 was developed for inhibition of Hsp27 in mice. In addition, mice trans-infected with adenovirus vector encoding Hsp27 were used to testify the role of Hsp27 overexpression in LPS-induced renoprotection. Renal function, histological damage, inflammatory reaction, oxidative stress and apoptosis indices were measured. Western blot analysis was used to detect expression of Hsp27.

Results

We found LPS pretreatment stimulated renal up-regulation of Hsp27 and reduced renal IRI proven by less renal dysfunction, histological damage, inflammatory reaction, oxidative stress and apoptosis. It was observed that inhibition of Hsp27 synthesis by Quercetin abolished LPS-induced renoprotective effects. After renal knockdown of Hsp27, LPS-induced tolerance against renal IRI was largely removed. Mice with Hsp27 overexpression showed significantly improved renal function after IRI and LPS combined with Hsp27 overexpression had a synergistic effect on protection against renal IRI.

Conclusion

Administration of LPS produces protective effects against renal IRI via Hsp27 up-regulation. Preconditional Hsp27 up-regulation might have a great potential for the treatment of renal IRI via ameliorating apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Safian RD, Textor SC (2001) Renal-artery stenosis. N Engl J Med 344(6):431–442. https://doi.org/10.1056/NEJM200102083440607

    Article  CAS  PubMed  Google Scholar 

  2. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351(2):159–169. https://doi.org/10.1056/NEJMra032401351/2/159

    Article  CAS  PubMed  Google Scholar 

  3. Kelly KJ, Molitoris BA (2000) Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol 20(1):4–19

    CAS  PubMed  Google Scholar 

  4. Sheridan AM, Bonventre JV (2001) Pathophysiology of ischemic acute renal failure. Contrib Nephrol 132:7–21

    Article  CAS  Google Scholar 

  5. Lafrance JP, Miller DR (2010) Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol 21(2):345–352. https://doi.org/10.1681/ASN.2009060636

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365(9457):417–430. https://doi.org/10.1016/S0140-6736(05)17831-3

    Article  CAS  PubMed  Google Scholar 

  7. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol JASN 16(11):3365–3370. https://doi.org/10.1681/ASN.2004090740

    Article  PubMed  Google Scholar 

  8. Palsson-McDermott EM, O’Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, toll-like receptor-4. Immunology 113(2):153–162. https://doi.org/10.1111/j.1365-2567.2004.01976.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biswas SK, Lopez-Collazo E (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 30(10):475–487. https://doi.org/10.1016/j.it.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  10. He K, Chen X, Han C, Xu L, Zhang J, Zhang M, Xia Q (2014) Lipopolysaccharide-induced cross-tolerance against renal ischemia–reperfusion injury is mediated by hypoxia-inducible factor-2α-regulated nitric oxide production. Kidney Int 85(2):276–288. https://doi.org/10.1038/ki.2013.342

    Article  CAS  PubMed  Google Scholar 

  11. Zhang S, Han CH, Chen XS, Zhang M, Xu LM, Zhang JJ, Xia Q (2012) Transient ureteral obstruction prevents against kidney ischemia/reperfusion injury via hypoxia-inducible factor (HIF)-2α activation. PLoS ONE 7(1):e29876. https://doi.org/10.1371/journal.pone.0029876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim M, Park SW, Chen SW, Gerthoffer WT, D’Agati VD, Lee HT (2010) Selective renal overexpression of human heat shock protein 27 reduces renal ischemia–reperfusion injury in mice. Am J Physiol Renal Physiol 299(2):F347–F358. https://doi.org/10.1152/ajprenal.00194.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen SF, Nieh S, Jao SW, Liu CL, Wu CH, Chang YC, Yang CY, Lin YS (2012) Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells. PLoS ONE 7(11):e49275. https://doi.org/10.1371/journal.pone.0049275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ha T, Hua F, Liu X, Ma J, McMullen JR, Shioi T, Izumo S, Kelley J, Gao X, Browder W, Williams DL, Kao RL, Li C (2008) Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3 K/Akt-dependent mechanism. Cardiovasc Res 78(3):546–553. https://doi.org/10.1093/cvr/cvn037

    Article  CAS  PubMed  Google Scholar 

  15. Hirano S, Rees RS, Yancy SL, Welsh MJ, Remick DG, Yamada T, Hata J, Gilmont RR (2004) Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 20(1):1–14

    Article  CAS  PubMed  Google Scholar 

  16. Renton KW, Nicholson TE (2000) Hepatic and central nervous system cytochrome P450 are down-regulated during lipopolysaccharide-evoked localized inflammation in brain. J Pharmacol Exp Ther 294(2):524–530

    CAS  PubMed  Google Scholar 

  17. Collino M, Patel NS, Lawrence KM, Collin M, Latchman DS, Yaqoob MM, Thiemermann C (2005) The selective PPARγ antagonist GW9662 reverses the protection of LPS in a model of renal ischemia–reperfusion. Kidney Int 68(2):529–536. https://doi.org/10.1111/j.1523-1755.2005.00430.x

    Article  CAS  PubMed  Google Scholar 

  18. Kim JI, Jang HS, Park KM (2010) Endotoxin-induced renal tolerance against ischemia and reperfusion injury is removed by iNOS, but not eNOS, gene-deletion. BMB Rep 43(9):629–634. https://doi.org/10.5483/BMBRep.2010.43.9.629

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Hu W, Meng B, Tang T (2010) PPARγ agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats. Neurol Res 32(8):852–859. https://doi.org/10.1179/016164110X12556180206112

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Hong S, Feng Z, Xin Y, Wang Q, Fu J, Zhang C, Li G, Luo L, Yin Z (2010) Regulation of lipopolysaccharide-induced inflammatory response by heat shock protein 27 in THP-1 cells. Cell Immunol 264(2):127–134. https://doi.org/10.1016/j.cellimm.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  21. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18(21):5943–5952. https://doi.org/10.1093/emboj/18.21.5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci CMLS 66(20):3289–3307. https://doi.org/10.1007/s00018-009-0086-3

    Article  CAS  PubMed  Google Scholar 

  23. Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis Int J Progr Cell Death 8(1):61–70

    Article  CAS  Google Scholar 

  24. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J Off Publ Federation Am Soc Exp Biol 13(14):2061–2070

    Article  CAS  Google Scholar 

  25. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9):645–652. https://doi.org/10.1038/35023595

    Article  CAS  PubMed  Google Scholar 

  26. Arrigo AP, Firdaus WJ, Mellier G, Moulin M, Paul C, Diaz-latoud C, Kretz-remy C (2005) Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods 35(2):126–138. https://doi.org/10.1016/j.ymeth.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  27. Park SW, Chen SW, Kim M, D’Agati VD, Lee HT (2009) Human heat shock protein 27-overexpressing mice are protected against acute kidney injury after hepatic ischemia and reperfusion. Am J Physiol Renal Physiol 297(4):F885–F894. https://doi.org/10.1152/ajprenal.00317.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen SW, Park SW, Kim M, Brown KM, D’Agati VD, Lee HT (2009) Human heat shock protein 27 overexpressing mice are protected against hepatic ischemia and reperfusion injury. Transplantation 87(10):1478–1487. https://doi.org/10.1097/TP.0b013e3181a3c691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Roth S, Laser M, Ma JX, Crosson CE (2003) Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Sci 44(3):1299–1304

    Article  PubMed  Google Scholar 

  30. Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH (2008) Sulforaphane protects kidneys against ischemia–reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 75(11):2214–2223. https://doi.org/10.1016/j.bcp.2008.02.029

    Article  CAS  PubMed  Google Scholar 

  31. Nakayama Y, Ueda S, Yamagishi S, Obara N, Taguchi K, Ando R, Kaida Y, Iwatani R, Kaifu K, Yokoro M, Toyonaga M, Kusumoto T, Fukami K, Okuda S (2014) Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury. Kidney Int 85(3):570–578. https://doi.org/10.1038/ki.2013.398

    Article  CAS  PubMed  Google Scholar 

  32. Chen YT, Tsai TH, Yang CC, Sun CK, Chang LT, Chen HH, Chang CL, Sung PH, Zhen YY, Leu S, Chang HW, Chen YL, Yip HK (2013) Exendin-4 and sitagliptin protect kidney from ischemia–reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med 11:270. https://doi.org/10.1186/1479-5876-11-270

    Article  PubMed  PubMed Central  Google Scholar 

  33. Teramoto S, Shimura H, Tanaka R, Shimada Y, Miyamoto N, Arai H, Urabe T, Hattori N (2013) Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice. PLoS ONE 8(6):e66001. https://doi.org/10.1371/journal.pone.0066001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel AB, Robertson WG, Choong S, Hothersall JS (2006) Heat-shock protein 25 ameliorates calcium oxalate crystal-mediated oxidative stress in renal epithelial cells. BJU Int 98(5):1094–1099. https://doi.org/10.1111/j.1464-410X.2006.06478.x

    Article  CAS  PubMed  Google Scholar 

  35. Zhu XN, Chen LP, Bai Q, Ma L, Li DC, Zhang JM, Gao C, Lei ZN, Zhang ZB, Xing XM, Liu CX, He ZN, Li J, Xiao YM, Zhang AH, Zeng XW, Chen W (2014) PP2A-AMPKα-HSF1 axis regulates the metal-inducible expression of HSPs and ROS clearance. Cell Signal 26(4):825–832. https://doi.org/10.1016/j.cellsig.2014.01.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Shanghai Municipal Commission of Health and Family Planning (20124Y130) and the National Natural Science Foundation of China (Grant Number: 81270558). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Shanghai Jiaotong University School of Medicine and the Regulations for Practice of Experimental Animals (issued by Scientific and Technical Committee, P. R. China, 1988). All the procedures described were approved by the Animal Use and Care Committee of Shanghai Jiaotong University School of Medicine (Approval Number: SYKX-2008-0050).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Xia, L. & Zhang, J. LPS ameliorates renal ischemia/reperfusion injury via Hsp27 up-regulation. Int Urol Nephrol 50, 571–580 (2018). https://doi.org/10.1007/s11255-017-1735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1735-3

Keywords

Navigation