Skip to main content

Advertisement

Log in

Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The complicated communities of microbiota colonizing the human gastrointestinal tract exert a strong function in health maintenance and disease prevention. Indeed, accumulating evidence has indicated that the intestinal microbiota plays a key role in the pathogenesis and development of chronic kidney disease (CKD). Modulation of the gut microbiome composition in CKD may contribute to the accumulation of gut-derived uremic toxins, high circulating level of lipopolysaccharides and immune deregulation, all of which play a critical role in the pathogenesis of CKD and CKD-associated complications. In this review, we discuss the recent findings on the potential impact of gut microbiota in CKD and the underlying mechanisms by which microbiota can influence kidney diseases and vice versa. Additionally, the potential efficacy of pre-, pro- and synbiotics in the restoration of healthy gut microbia is described in detail to provide future directions for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BUN:

Blood urea nitrogen

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

DMA:

Dimethylamine

ESKD:

End-stage kidney disease

GFR:

Glomerular filtration rate

GIT:

Gastrointestinal tract

GLP-1:

Glucagon-like peptide 1

GOSs:

Galacto-oligosaccharides

IL-6:

Interleukin-6

IS:

Indoxyl sulfate

LPS:

Lipopolysaccharides

NKT:

Natural killer T

PCS:

P-cresyl sulfate

PYY:

Peptide YY

RS:

Resistant starch

SCFAs:

Short-chain fatty acids

References

  1. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR et al (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382(9889):339–352

    Article  PubMed  Google Scholar 

  2. Evenepoel P, Meijers BK, Bammens BR et al (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int 76:S12–S19

    Article  CAS  Google Scholar 

  3. Anders H-J, Andersen K, Stecher B (2013) The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 83(6):1010–1016

    Article  CAS  PubMed  Google Scholar 

  4. Szeto C-C, Kwan BC-H, Chow K-M et al (2008) Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol 3(2):431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Housman A, Shropshire Lad A Incidence and prevalence. United States Renal Data System. In: Proceedings of the 2010 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, vol 2. Atlas of ESRD

  6. Cerf-Bensussan N, Eberl G (2012) The dialog between microbiota and the immune system: shaping the partners through development and evolution. Semin Immunol 24(1):1–2

    Article  PubMed  Google Scholar 

  7. Gonçalves S, Pecoits-Filho R, Perreto S et al (2006) Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant 21(10):2788–2794

    Article  PubMed  Google Scholar 

  8. Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546

    Article  PubMed  CAS  Google Scholar 

  9. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15(13):1546–1558

    Article  CAS  PubMed  Google Scholar 

  10. Vaziri ND (2012) CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 21(6):587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    Article  PubMed  CAS  Google Scholar 

  12. Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22(1):283–307

    Article  CAS  PubMed  Google Scholar 

  13. Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022

    Article  CAS  PubMed  Google Scholar 

  14. Lam V, Su J, Koprowski S et al (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26(4):1727–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hida M, Aiba Y, Sawamura S et al (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin®, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74(2):349–355

    Article  CAS  PubMed  Google Scholar 

  17. Simenhoff M, Dunn S, Zollner G et al (1995) Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 22(1–3):92–96

    Google Scholar 

  18. Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315

    Article  PubMed  Google Scholar 

  19. Aron-Wisnewsky J, Clément K (2016) The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12(3):169–181

    Article  CAS  PubMed  Google Scholar 

  20. Mafra D, Lobo JC, Barros AF et al (2014) Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 9(3):399–410

    Article  CAS  PubMed  Google Scholar 

  21. Sabatino A, Regolisti G, Brusasco I et al (2015) Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 30(6):924–933

    Article  CAS  PubMed  Google Scholar 

  22. Carrero JJ, Stenvinkel P (2009) Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clin J Am Soc Nephrol 4(Supplement 1):S49–S55

    Article  CAS  PubMed  Google Scholar 

  23. Neirynck N, Vanholder R, Schepers E et al (2013) An update on uremic toxins. Int Urol Nephrol 45(1):139–150

    Article  CAS  PubMed  Google Scholar 

  24. Sirich TL, Funk BA, Plummer NS et al (2014) Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol 25(3):615–622

    Article  CAS  PubMed  Google Scholar 

  25. Soulage CO, Koppe L, Fouque D (2013) Protein-bound uremic toxins… new targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. J Ren Nutr 23(6):464–466

    Article  CAS  PubMed  Google Scholar 

  26. Hughes R, Magee E, Bingham S (2000) Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol 1(2):51–58

    CAS  PubMed  Google Scholar 

  27. Meijers BK, Verbeke K, Dehaen W et al (2009) The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis 54(5):891–901

    Article  CAS  PubMed  Google Scholar 

  28. Meijers BK, Claes K, Bammens B et al (2010) p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin J Am Soc Nephrol 5(7):1182–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koppe L, Pillon NJ, Vella RE et al (2013) p-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol 24(1):88–99

    Article  CAS  PubMed  Google Scholar 

  30. Mutsaers HA, Stribos EG, Glorieux G et al (2015) Chronic kidney disease and fibrosis: the role of uremic retention solutes. Front Med 2:60

    Article  Google Scholar 

  31. Meijers BK, Evenepoel P (2011) The gut–kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transplant 26(3):759–761

    Article  CAS  PubMed  Google Scholar 

  32. Barreto FC, Barreto DV, Liabeuf S et al (2009) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4(10):1551–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raff AC, Meyer TW, Hostetter TH (2008) New insights into uremic toxicity. Curr Opin Nephrol Hypertens 17(6):560–565

    Article  CAS  PubMed  Google Scholar 

  34. Faure V, Dou L, Sabatier F et al (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4(3):566–573

    Article  CAS  PubMed  Google Scholar 

  35. Tumur Z, Shimizu H, Enomoto A et al (2010) Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-ĸB activation. Am J Nephrol 31(5):435–441

    Article  CAS  PubMed  Google Scholar 

  36. Lekawanvijit S, Adrahtas A, Kelly DJ et al (2010) Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J 31(14):1771–1779

    Article  CAS  PubMed  Google Scholar 

  37. Aoki K, Teshima Y, Kondo H et al (2015) Role of indoxyl sulfate as a predisposing factor for atrial fibrillation in renal dysfunction. J Am Heart Assoc 4(10):e002023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gross P, Massy ZA, Henaut L et al (2015) Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J Cell Physiol 230(12):2927–2935

    Article  CAS  PubMed  Google Scholar 

  39. Lin C-J, Pan C-F, Liu H-L et al (2012) The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis 225(1):173–179

    Article  CAS  PubMed  Google Scholar 

  40. Lin C-J, Wu V, Wu P-C et al (2015) Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 10(7):e0132589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nii-Kono T, Iwasaki Y, Uchida M et al (2007) Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int 71(8):738–743

    Article  CAS  PubMed  Google Scholar 

  42. Lin C-J, Pan C-F, Chuang C-K et al (2014) Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease. Am J Med Sci 347(5):370–376

    Article  PubMed  Google Scholar 

  43. Hirata J, Hirai K, Asai H et al (2015) Indoxyl sulfate exacerbates low bone turnover induced by parathyroidectomy in young adult rats. Bone 79:252–258

    Article  CAS  PubMed  Google Scholar 

  44. Howitt MR, Garrett WS (2012) A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity. Nat Med 18(8):1188–1189

    Article  CAS  PubMed  Google Scholar 

  45. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rak K, Rader DJ (2011) Cardiovascular disease: the diet-microbe morbid union. Nature 472(7341):40–41

    Article  CAS  PubMed  Google Scholar 

  47. Stubbs JR, House JA, Ocque AJ et al (2016) Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol 27(1):305–313

    Article  CAS  PubMed  Google Scholar 

  48. Missailidis C, Hällqvist J, Qureshi AR et al (2016) Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE 11(1):e0141738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kaysen GA, Johansen KL, Chertow GM et al (2015) Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr 25(4):351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saito A, Takagi T, Chung T et al (1983) Serum levels of polyamines in patients with chronic renal failure. Kidney Int 16:S234–S237

    CAS  Google Scholar 

  51. Lutz W (1979) A uremic peptide containing polyamine: formation and possible role in uremic hypertriglyceridemia. Physiol Chem Phys 12(5):451–456

    Google Scholar 

  52. Chiang C-K, Tanaka T, Inagi R et al (2011) Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig 91(11):1564–1571

    Article  CAS  PubMed  Google Scholar 

  53. Nangaku M, Mimura I, Yamaguchi J et al (2015) Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients. J Ren Nutr 25(2):160–163

    Article  CAS  PubMed  Google Scholar 

  54. Ahmed MSE, Abed M, Voelkl J et al (2013) Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 14(1):244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yoshida K, Yoneda T, Kimura S et al (2006) Polyamines as an inhibitor on erythropoiesis of hemodialysis patients by in vitro bioassay using the fetal mouse liver assay. Ther Apheresis Dial 10(3):267–272

    Article  CAS  Google Scholar 

  56. Cario E, Gerken G, Podolsky D (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132(4):1359–1374

    Article  CAS  PubMed  Google Scholar 

  57. Schlee M, Harder J, Köten B et al (2008) Probiotic lactobacilli and VSL# 3 induce enterocyte β-defensin 2. Clin Exp Immunol 151(3):528–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kiechl S, Lorenz E, Reindl M et al (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347(3):185–192

    Article  CAS  PubMed  Google Scholar 

  59. Muccioli GG, Naslain D, Bäckhed F et al (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6(1):392

    PubMed  PubMed Central  Google Scholar 

  60. Sivapalaratnam S, Farrugia R, Nieuwdorp M et al (2011) Identification of candidate genes linking systemic inflammation to atherosclerosis; results of a human in vivo LPS infusion study. BMC Med Genomics 4(1):64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ryu M, Kulkarni OP, Radomska E et al (2011) Bacterial CpG-DNA accelerates Alport glomerulosclerosis by inducing an M1 macrophage phenotype and tumor necrosis factor-α-mediated podocyte loss. Kidney Int 79(2):189–198

    Article  CAS  PubMed  Google Scholar 

  62. Patole PS, Pawar RD, Lichtnekert J et al (2007) Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis. J Autoimmun 29(1):52–59

    Article  CAS  PubMed  Google Scholar 

  63. Farhadi A, Banan A, Fields J et al (2003) Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 18(5):479–497

    Article  PubMed  Google Scholar 

  64. Magnusson M, Magnusson K-E, Sundqvist T et al (1990) Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low-and high-protein diets. Nephron 56(3):306–311

    Article  CAS  PubMed  Google Scholar 

  65. Magnusson M, Magnusson K, Sundqvist T et al (1991) Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut 32(7):754–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kang J (1993) The gastrointestinal tract in uremia. Dig Dis Sci 38(2):257–268

    Article  CAS  PubMed  Google Scholar 

  67. de Almeida Duarte JB, de Aguilar-Nascimento JE, Nascimento M et al (2004) Bacterial translocation in experimental uremia. Urol Res 32(4):266–270

    Article  PubMed  CAS  Google Scholar 

  68. Vaziri ND, Yuan J, Nazertehrani S et al (2013) Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol 38(2):99–103

    Article  CAS  PubMed  Google Scholar 

  69. Vaziri N, Dure-Smith B, Miller R et al (1985) Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol 80(8):608–611

    CAS  PubMed  Google Scholar 

  70. Ding L-A, Li J-S (2003) Gut in diseases: physiological elements and their clinical significance. World J Gastroenterol 9(11):2385–2389

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang F, Zhang P, Jiang H et al (2012) Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci 57(11):2856–2862

    Article  CAS  PubMed  Google Scholar 

  72. Wang F, Jiang H, Shi K et al (2012) Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology 17(8):733–738

    Article  CAS  PubMed  Google Scholar 

  73. Alegre ML, Mannon RB, Mannon PJ (2014) The microbiota, the immune system and the allograft. Am J Transplant 14(6):1236–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bromberg JS, Fricke WF, Brinkman CC et al (2015) Microbiota [mdash] implications for immunity and transplantation. Nat Rev Nephrol 11(6):342–353

    Article  CAS  PubMed  Google Scholar 

  75. Stenvinkel P (2005) Inflammation in end-stage renal disease–a fire that burns within. Contrib Nephrol 149:185–199

    Article  PubMed  Google Scholar 

  76. Kato S, Chmielewski M, Honda H et al (2008) Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 3(5):1526–1533

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C et al (2011) The pathogenesis of sepsis. Annu Rev Pathol Mech Dis 6:19–48

    Article  CAS  Google Scholar 

  78. Carrero JJ, Stenvinkel P (2010) Inflammation in end-stage renal disease—What have we learned in 10 years? Semin Dial 23(5):498–509

    Article  PubMed  Google Scholar 

  79. Harris K, Kassis A, Major G et al (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes 2012:879151

    PubMed  PubMed Central  Google Scholar 

  80. Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23(4):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12(1):5–9

    Article  CAS  PubMed  Google Scholar 

  82. Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485

    Article  CAS  PubMed  Google Scholar 

  84. Kranich J, Maslowski KM, Mackay CR (2011) Commensal flora and the regulation of inflammatory and autoimmune responses. Semin Immunol 23(2):139–145

    Article  CAS  PubMed  Google Scholar 

  85. Niebauer J, Volk H-D, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353(9167):1838–1842

    Article  CAS  PubMed  Google Scholar 

  86. McIntyre CW, Harrison LE, Eldehni MT et al (2011) Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol 6(1):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee YK, Menezes JS, Umesaki Y et al (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 108(Supplement 1):4615–4622

    Article  CAS  PubMed  Google Scholar 

  88. Vaziri ND, Pahl MV, Crum A et al (2012) Effect of uremia on structure and function of immune system. J Ren Nutr 22(1):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Janus N, Vacher L-V, Karie S et al (2008) Vaccination and chronic kidney disease. Nephrol Dial Transplant 23(3):800–807

    Article  PubMed  Google Scholar 

  90. Hotchkiss RS, Coopersmith CM, McDunn JE et al (2009) The sepsis seesaw: tilting toward immunosuppression. Nat Med 15(5):496–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mutsaers HA, Engelke UF, Wilmer MJ et al (2013) Optimized metabolomic approach to identify uremic solutes in plasma of stage 3–4 chronic kidney disease patients. PLoS ONE 8(8):e71199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Konstantinov SR, Smidt H, de Vos WM et al (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci 105(49):19474–19479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Van Baarlen P, Troost FJ, van Hemert S et al (2009) Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci 106(7):2371–2376

    Article  PubMed  PubMed Central  Google Scholar 

  94. Murthy M, Venkitanarayan K, Rangavajhyala N et al (2000) Delineation of beneficial characteristics of effective probiotics. JAMA 3(2):38–43

    Google Scholar 

  95. Chen L, Liu W, Li Y et al (2013) Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int Immunopharmacol 17(1):108–115

    Article  PubMed  CAS  Google Scholar 

  96. Ranganathan N, Patel B, Ranganathan P et al (2005) Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats. Sci World J 5:652–660

    Article  Google Scholar 

  97. Ranganathan N, Patel BG, Ranganathan P et al (2006) In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 52(1):70–79

    Article  PubMed  Google Scholar 

  98. Niwa T (2011) Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther Apheresis Dial 15(2):120–124

    Article  CAS  Google Scholar 

  99. Ueda H, Shibahara N, Takagi S et al (2008) AST-120 treatment in pre-dialysis period affects the prognosis in patients on hemodialysis. Ren Fail 30(9):856–860

    Article  CAS  PubMed  Google Scholar 

  100. Takayama F, Taki K, Niwa T (2003) Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 41(3):S142–S145

    Article  PubMed  Google Scholar 

  101. Taki K, Takayama F, Niwa T (2005) Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr 15(1):77–80

    Article  PubMed  Google Scholar 

  102. Piñero-Lambea C, Ruano-Gallego D, Fernández LÁ (2015) Engineered bacteria as therapeutic agents. Curr Opin Biotechnol 35:94–102

    Article  PubMed  CAS  Google Scholar 

  103. Mandell DJ, Lajoie MJ, Mee MT et al (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518(7537):55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401

    CAS  PubMed  Google Scholar 

  105. Gibson GR, Probert HM, Van Loo J et al (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(02):259–275

    Article  CAS  PubMed  Google Scholar 

  106. Silk D, Davis A, Vulevic J et al (2009) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29(5):508–518

    Article  CAS  PubMed  Google Scholar 

  107. Meijers BK, De Preter V, Verbeke K et al (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25(1):219–224

    Article  CAS  PubMed  Google Scholar 

  108. Salmean YA, Segal MS, Langkamp-Henken B et al (2013) Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J Ren Nutr 23(2):e29–e32

    Article  CAS  PubMed  Google Scholar 

  109. Cani PD, Neyrinck A, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383

    Article  CAS  PubMed  Google Scholar 

  110. Broekaert WF, Courtin CM, Verbeke K et al (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51(2):178–194

    Article  CAS  PubMed  Google Scholar 

  111. Gibson GR, Beatty ER, Wang X et al (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108(4):975–982

    Article  CAS  PubMed  Google Scholar 

  112. Pylkas AM, Juneja LR, Slavin JL (2005) Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J Med Food 8(1):113–116

    Article  CAS  PubMed  Google Scholar 

  113. Reimer R, McBURNEY MI (1996) Dietary fiber modulates intestinal proglucagon messenger ribonucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats. Endocrinology 137(9):3948–3956

    Article  CAS  PubMed  Google Scholar 

  114. Dumoulin V, Moro F, Barcelo A et al (1998) Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum. Endocrinology 139(9):3780–3786

    Article  CAS  PubMed  Google Scholar 

  115. Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3(3):153–165

    Article  CAS  PubMed  Google Scholar 

  116. Ranganath L, Beety J, Morgan L et al (1996) Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38(6):916–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418(6898):650

    Article  CAS  PubMed  Google Scholar 

  118. Delzenne NM, Cani PD, Daubioul C et al (2005) Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 93(S1):S157–S161

    Article  CAS  PubMed  Google Scholar 

  119. Alimentarius C (2010) Guidelines on nutrition labelling CAC/GL 2-1985 as last amended 2010. Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission, FAO, Rome

    Google Scholar 

  120. Chiavaroli L, Mirrahimi A, Sievenpiper J et al (2015) Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 69(7):761

    Article  CAS  PubMed  Google Scholar 

  121. Vaziri ND, Liu S-M, Lau WL et al (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 9(12):e114881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Sirich TL, Plummer NS, Gardner CD et al (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Evenepoel P, Bammens B, Verbeke K et al (2006) Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: a pilot study. Kidney Int 70(1):192–198

    Article  CAS  PubMed  Google Scholar 

  124. Rossi M, Johnson DW, Morrison M et al (2016) Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol 11(2):223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nakabayashi I, Nakamura M, Kawakami K et al (2011) Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 26(3):1094–1098

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yue Cai for critical review and important intellectual contributions to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Kang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interests exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Kang, Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol 50, 289–299 (2018). https://doi.org/10.1007/s11255-017-1689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1689-5

Keywords

Navigation