Skip to main content

Advertisement

Log in

Tissue advanced glycation end products (AGEs), measured by skin autofluorescence, predict mortality in peritoneal dialysis

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

The relation between tissue AGEs and mortality in end-stage renal disease (ESRD) is documented, but only in hemodialysis (HD) patients. This study aimed to measure and compare tissue AGEs levels in patients receiving either HD or peritoneal dialysis (PD) and to study the effect of these products on all-cause, cardiovascular or sepsis-related mortality.

Methods

Tissue AGEs were noninvasively assessed in 304 dialysis patients (202 on chronic HD and 102 on continuous ambulatory PD) by measuring skin autofluorescence using a validated Autofluorescence Reader (AGE Reader, DiagnOptics b.v., Groningen, The Netherlands).

Results

There was no difference in regard to AGEs levels between the HD (3.6 ± 0.8 AU)- and PD (3.5 ± 0.7 AU, p = 0.2)-treated patients. Diabetic patients had higher AGEs values in the HD group (3.97 ± 0.81 vs. 3.52 ± 0.77, p = 0.002), but not in the PD group (3.68 ± 0.6 vs. 3.45 ± 0.70, p = 0.26). In PD patients, increasing AGEs levels were associated with an elevated risk of all-cause mortality (a 2.09-fold increase for each increment of 1 AU in AGEs values) and sepsis (a 3.44-fold increase for each increment of 1 AU in AGEs values)-related mortality. Performing a similar analysis in diabetic patients, AGEs was associated only with sepsis-related mortality (a 3.08-fold increase for each increment of 1 AU in AGEs values).

Conclusions

This is the first study that demonstrates a relationship between tissue AGEs levels and sepsis-related mortality in PD-treated or diabetic ESRD patients. Future studies are necessary to evaluate the non-cardiovascular effects of tissue AGEs in ESRD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baynes JW (2000) From life to death—the struggle between chemistry and biology during aging: the Maillard reaction as an amplifier of genomic damage. Biogerontology 1(3):235–246

    Article  CAS  PubMed  Google Scholar 

  2. Makita Z, Radoff S, Rayfield EJ et al (1991) Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 325(12):836–842

    Article  CAS  PubMed  Google Scholar 

  3. Vishwanath V, Frank KE, Elmets CA, Dauchot PJ, Monnier VM (1986) Glycation of skin collagen in type I diabetes mellitus. Correlation with long-term complications. Diabetes 35:916–921

    Article  CAS  PubMed  Google Scholar 

  4. Beisswenger PJ, Makita Z, Curphey TJ et al (1995) Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes 44(7):824–829

    Article  CAS  PubMed  Google Scholar 

  5. Miyata T, Wada Y, Cai Z et al (1997) Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int 51(4):1170–1181

    Article  CAS  PubMed  Google Scholar 

  6. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21(1):3–12

    Article  CAS  PubMed  Google Scholar 

  7. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C (2003) Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant 18(7):1272–1280

    Article  CAS  PubMed  Google Scholar 

  8. Liliensiek B, Weigand MA, Bierhaus A et al (2004) Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113(11):1641–1650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lutterloh EC, Opal SM, Pittman DD et al (2007) Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit Care 11(6):R122

    Article  PubMed Central  PubMed  Google Scholar 

  10. Christaki E, Opal SM, Keith JC Jr et al (2011) A monoclonal antibody against RAGE alters gene expression and is protective in experimental models of sepsis and pneumococcal pneumonia. Shock 35(5):492–498

    Article  CAS  PubMed  Google Scholar 

  11. Meerwaldt R, Graaff R, Oomen PH et al (2004) Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 47(7):1324–1330

    Article  CAS  PubMed  Google Scholar 

  12. Meerwaldt R, Hartog JW, Graaff R et al (2005) Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients. J Am Soc Nephrol 16(12):3687–3693

    Article  CAS  PubMed  Google Scholar 

  13. Gerrits EG, Lutgers HL, Smeets GH et al (2012) Skin autofluorescence: a pronounced marker of mortality in hemodialysis patients. Nephron Extra 2(1):184–191

    Article  PubMed Central  PubMed  Google Scholar 

  14. Arsov S, Trajceska L, van Oeveren W et al (2013) Increase in skin autofluorescence and release of heart-type fatty acid binding protein in plasma predicts mortality of hemodialysis patients. Artif Organs 37(7):E114–E122

    Article  CAS  PubMed  Google Scholar 

  15. Kimura H, Tanaka K, Kanno M, et al (2014) Skin autofluorescence predicts cardiovascular mortality in patients on chronic hemodialysis. Ther Apher Dial Jan 24 (Epub ahead of print)

  16. Mancia G, De Backer G et al (2007) 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the european society of hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 25(6):1105–1187

    Article  CAS  PubMed  Google Scholar 

  17. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62

  18. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39(2):165–228

    Article  CAS  PubMed  Google Scholar 

  19. Meerwaldt R, Links T, Graaff R et al (2005) Simple noninvasive measurement of skin autofluorescence. Ann N Y Acad Sci 1043:290–298

    Article  CAS  PubMed  Google Scholar 

  20. Oleniuc M, Schiller A, Secara I et al (2012) Evaluation of advanced glycation end products accumulation, using skin autofluorescence, in CKD and dialysis patients. Int Urol Nephrol 44(5):1441–1449

    Article  CAS  PubMed  Google Scholar 

  21. McIntyre NJ, Chesterton LJ, John SG et al (2010) Tissue-advanced glycation end product concentration in dialysis patients. Clin J Am Soc Nephrol 5:51–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ueno H, Koyama H, Tanaka S et al (2008) Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease. Metabolism 57(10):1452–1457

    Article  CAS  PubMed  Google Scholar 

  23. Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399

    Article  CAS  PubMed  Google Scholar 

  24. Meerwaldt R, Lutgers HL, Links TP et al (2007) Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care 30(1):107–112

    Article  CAS  PubMed  Google Scholar 

  25. Lutgers HL, Gerrits EG, Graaff R et al (2009) Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus. Diabetologia 52(5):789–797

    Article  CAS  PubMed  Google Scholar 

  26. de Vos LC, Mulder DJ, Smit AJ et al (2014) Skin autofluorescence is associated with 5-year mortality and cardiovascular events in patients with peripheral artery disease. Arterioscler Thromb Vasc Biol 34(4):933–938

    Article  PubMed  Google Scholar 

  27. Kramer A, Stel VS, Caskey FJ et al (2012) Exploring the association between macroeconomic indicators and dialysis mortality. Clin J Am Soc Nephrol 7(10):1655–1663

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schmidt AM, Vianna M, Gerlach M et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997

    CAS  PubMed  Google Scholar 

  29. Neeper M, Schmidt AM, Brett J et al (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004

    CAS  PubMed  Google Scholar 

  30. Bopp C, Bierhaus A, Hofer S et al (2008) Bench-to-bedside review: the inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care 12(1):201

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hou FF, Ren H, Owen WF Jr et al (2004) Enhanced expression of receptor for advanced glycation end products in chronic kidney disease. J Am Soc Nephrol 15:1889–1896

    Article  CAS  PubMed  Google Scholar 

  32. Koyama H, Nishizawa Y (2010) AGEs/RAGE in CKD: irreversible metabolic memory road toward CVD? Eur J Clin Invest 40(7):623–635

    Article  CAS  PubMed  Google Scholar 

  33. Yamagishi S, Nakamura K, Matsui T, Ueda S, Noda Y, Imaizumi T (2008) Inhibitors of advanced glycation end products (AGEs): potential utility for the treatment of cardiovascular disease. Cardiovasc Ther 26:50–58

    CAS  PubMed  Google Scholar 

  34. Yamagishi S, Matsui T, Nakamura K, Noda Y, Imaizumi T (2008) Receptor for advanced glycation end products (RAGE): a novel therapeutic target for diabetic vascular complication. Curr Pharm Des 14:487–495

    Article  CAS  PubMed  Google Scholar 

  35. Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4(6):469–478

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108(7):949–955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hori O, Brett J, Slattery T et al (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270(43):25752–25761

    Article  CAS  PubMed  Google Scholar 

  38. Hofmann MA, Drury S, Fu C et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt AM, Yan SD, Yan SF, Stern DM (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498(2–3):99–111

    Article  CAS  PubMed  Google Scholar 

  40. Yan SD, Zhu H, Zhu A et al (2000) Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med 6(6):643–651

    Article  CAS  PubMed  Google Scholar 

  41. Bierhaus A, Schiekofer S, Schwaninger M et al (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50(12):2792–2808

    Article  CAS  PubMed  Google Scholar 

  42. Sousa MM, Yan SD, Stern D, Saraiva MJ (2000) Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NF-kB) activation. Lab Invest 80(7):1101–1110

    Article  CAS  PubMed  Google Scholar 

  43. Degryse B, Bonaldi T, Scaffidi P et al (2001) The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol 152(6):1197–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Schwenger V, Morath C, Salava A et al (2006) Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. J Am Soc Nephrol 17(1):199–207

    Article  CAS  PubMed  Google Scholar 

  45. De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH (2003) Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 14(8):2109–2118

    PubMed  Google Scholar 

Download references

Acknowledgments

This study has been partially funded by IDEI PN-II-ID-PCE-2011-3-0637 Grant and the University of Medicine and Pharmacy Iasi Grant No. 1640/01.02.2013.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrie Siriopol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siriopol, D., Hogas, S., Veisa, G. et al. Tissue advanced glycation end products (AGEs), measured by skin autofluorescence, predict mortality in peritoneal dialysis. Int Urol Nephrol 47, 563–569 (2015). https://doi.org/10.1007/s11255-014-0870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0870-3

Keywords

Navigation