Skip to main content
Log in

Niacin and analogs for phosphate control in dialysis—perspective from a developing country

  • Nephrology - Review Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Hyperphosphatemia is an important modifiable risk factor in the dialysis population because it is linked to increased mortality. Existing phosphate-reducing agents either increase the risk of vascular calcification or are costly with high pill burden. Niacin shows promise as a cheap drug with low pill burden and a novel mode of action. Niacin and its metabolite nicotinamide inhibit the small intestinal sodium–phosphate cotransporter. Approximately 50% of intestinal phosphate absorption occurs through this route under physiological conditions. Studies performed on the dialysis population with niacin and nicotinamide have shown significant phosphate reduction with lowering of the calcium–phosphorus product. The well documented increase in serum HDL levels may also offer survival benefits. Side-effects include flushing, which is controlled with aspirin, diarrhea, and thrombocytopenia, which may be treatment-limiting. Niacin is cheap and phosphate reduction can be achieved by administration of one or two tablets per day. These factors will boost compliance in developing countries. Further basic research and large-scale clinical trials are needed in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller DF (1978) Pellagra deaths in the United States. Am J Clin Nutr 31(4):558–559

    CAS  PubMed  Google Scholar 

  2. Altschul R, Hoffer A, Stephen JD (1955) Influence of nicotinic acid on serum cholesterol in man. Arch Biochem 54:558–559. doi:10.1016/0003-9861(55)90070-9

    Article  CAS  PubMed  Google Scholar 

  3. Foley RN, Murray AM, Li S (2005) Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the united states medicare population, 1998 to 1999. J Am Soc Nephrol 16:489–495. doi:10.1681/ASN.2004030203

    Article  PubMed  Google Scholar 

  4. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15:2208–2218. doi:10.1097/01.ASN.0000133041.27682.A2

    Article  CAS  PubMed  Google Scholar 

  5. Young EW, Akiba T, Albert J (2004) Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis 44(Supl. 3):S34–S38

    Article  CAS  Google Scholar 

  6. Kestenbaum B, Sampson JN, Rudser KD (2004) Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16:520–528. doi:10.1681/ASN.2004070602

    Article  PubMed  Google Scholar 

  7. Sankarasubbaiyan S, Abraham G, Soundararajan P et al (2005) Parathyroid hormone and biochemical profile in chronic kidney disease patients in South India. Hemodial Int Jan; 9(1):63–67

    Article  Google Scholar 

  8. Tomasellow S, Dhupar S, Sherman RA (2004) Phosphate binders, K/DOQI guidelines and compliance: the unfortunate reality. Dial Transplant 33(5):236–240

    Google Scholar 

  9. Tzanakis IP, Papadaki AN, Wei M et al (2008) Magnesium carbonate for phosphate control for patients on hemodialysis randomized controlled trial. Int Urol Nephrol 40:193–201. doi:10.1007/s11255-007-9300-0

    Article  CAS  PubMed  Google Scholar 

  10. Chertow GM, Burke SK, Raggi P (2002) Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 62:245–252. doi:10.1046/j.1523-1755.2002.00434.x

    Article  CAS  PubMed  Google Scholar 

  11. Berns JS (2008). Niacin and related compounds for treating hyperphosphatemia in dialysis patients. Semin Dial 21(3):203–205. doi:10.1111/j.1525-139X.2008.00426.x

    Google Scholar 

  12. Shimoda K, Akiba T, Matsushima T, Rai T et al (1998) Niceriotol decreases serum phosphate levels in chronic hemodialysis patients. Nippon Jinzo Gakkai Shi 40:1–7

    CAS  PubMed  Google Scholar 

  13. Kuboyama N, Watanabe Y, Yamaguchi M, Sato K, Suzuki T, Akiba T (1999) Effects of niceritol on faecal and urinary phosphate excretion in normal rats. Nephrol Dial Transplant 14:610–614. doi:10.1093/ndt/14.3.610

    Article  CAS  PubMed  Google Scholar 

  14. Hilfiker H, Hattenhauer O, Murer H et al (1998) Characterization of a murine type II sodium–phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 95:14564–14569. doi:10.1073/pnas.95.24.14564

    Article  CAS  PubMed  Google Scholar 

  15. Tenenhouse HS (2005) Regulation of phosphorus homeostasis by the type IIa Na/phosphate cotransporter. Annu Rev Nutr 25:197–214. doi:10.1146/annurev.nutr.25.050304.092642

    Article  CAS  PubMed  Google Scholar 

  16. Eto N, Miyata Y, Ohno H, Yamashita T (2005) Nicotinamide prevents the development of hyperphosphatemia by suppressing the intestinal sodium dependent phosphate transporter in rats with adenine induced renal failure. Nephrol Dial Transplant 20:1378–1384. doi:10.1093/ndt/gfh781

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi Y, Tanaka A et al (2004) Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int 65:1099–1104

    Article  CAS  PubMed  Google Scholar 

  18. Sampathkumar K, Selvam M, Sooraj Y, Gowthaman S, Ajeshkumar R (2006) Extended release nicotinic acid is a novel agent for Phosphate control in dialysis. Int Urol Nephrol 38:171–174. doi:10.1007/s11255-006-0001-x

    Article  CAS  PubMed  Google Scholar 

  19. Sampathkumar K, Sooraj Y, Mahaldar AR (2007) Comparative efficacy of low dose nicotinic acid and Lanthanum in lowering the Phosphorus levels in hemodialysis patients. S-PO-0327-Paper presented at WCN 2007, Rio de Janeiro, Brazil

  20. Müller D, Mehling H et al (2007) Niacin lowers serum phosphate and increases HDL cholesterol in dialysis patients. Clin J Am Soc Nephrol 2:1249–1254. doi:10.2215/CJN.01470307

    Article  PubMed  Google Scholar 

  21. Cheng SC, Young DO (2008) A Randomized, double-blind, placebo-controlled trial of Niacinamide for reduction of Phosphorus in hemodialysis patients. Clin J Am Soc Nephrol 3:1131–1138. doi:10.2215/CJN.04211007

    Article  CAS  PubMed  Google Scholar 

  22. Musso CG, Reynaldi MJ, Aparicio C et al. (2007) Hyperphosphatemia and nicotinic acid in peritoneal dialysis patients. Int Urol Nephrol 229–230

  23. Restrepo Valencia A, Cruz J (2008) Safety and effectiveness of nicotinic acid in the management of patients with chronic renal disease and hyperlipidemia associated to hyperphosphatemia C. Nefrología 28(1):61–66

    CAS  PubMed  Google Scholar 

  24. Karpe F, Frayn KN (2004) The nicotinic acid receptor—a new mechanism for an old drug. Lancet 363:1892–1894. doi:10.1016/S0140-6736(04)16359-9

    Article  CAS  PubMed  Google Scholar 

  25. Hunsicker LG, Adler S, Caggiula A et al (1997) Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int 51(6):1908–1919. doi:10.1038/ki.1997.260

    Article  CAS  PubMed  Google Scholar 

  26. Manttari M, Tiula E, Alikoski T, Manninen V (1995) Effects of hypertension and dyslipidaemia on the decline in renal function. Hypertension 26(4):670–675

    CAS  PubMed  Google Scholar 

  27. Gupta R, Deedwania PC, Gupta A, Rastogi S, Panwar RB, Kothari K (2004) Prevalence of metabolic syndrome in an Indian urban population. Int J Cardiol 97(2):257–261. doi:10.1016/j.ijcard.2003.11.003

    Article  PubMed  Google Scholar 

  28. Ramachandran A, Snehalatha C, Satyavani K, Sivasankari S, Vijay V (2003) Metabolic syndrome in urban Asian Indian adults—a population study using modified ATP III criteria. Diabetes Res Clin Pract Jun;60(3):199–204

    Article  Google Scholar 

  29. Reddy KS, Shah B, Varghese C, Ramadoss A (2005) Responding to the threat of chronic diseases in India. Lancet 366:1746–1751

    Google Scholar 

  30. Abo-zenah H, Sabry A, Farouk A et al (2007) Impact of hemodialysis associated variables in lipid profiles in Egyptian hemodialysis population. Int Urol Nephrol 39:609–618. doi:10.1007/s11255-006-9162-x

    Article  CAS  PubMed  Google Scholar 

  31. Kaysen GA (2006) Dyslipidemia in chronic kidney disease: causes and consequences. Kidney Int 70:S55–S58

    Article  Google Scholar 

  32. Sheherd J, Packard CJ, Patsch JR et al (1979) Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism. J Clin Invest 63:858–867. doi:10.1172/JCI109385

    Article  Google Scholar 

  33. Rottembourg JB, Launay–Vacher V, Massard J (2005) Thrombocytopenia induced by nicotinamide in hemodialysis patients. Kidney Int 68:2911–2912. doi:10.1111/j.1523-1755.2005.00583_8.x

    Article  PubMed  Google Scholar 

  34. O’Brien T, Silverberg J, Nguyen T (1992) Nicotinic acid-induced toxicity associated with cytopenia and decreased level of thyroxin-binding globulin. Mayo Clin Proc 67:465–468

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaswamy Sampathkumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampathkumar, K. Niacin and analogs for phosphate control in dialysis—perspective from a developing country. Int Urol Nephrol 41, 913–918 (2009). https://doi.org/10.1007/s11255-008-9497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-008-9497-6

Keywords

Navigation