Skip to main content
Log in

On the High-Energy Solitary Wave Solutions for a Generalized KP Equation in a Bounded Domain

  • Published:
Ukrainian Mathematical Journal Aims and scope

We mainly deal with the existence of infinitely many high-energy solitary wave solutions for a class of generalized Kadomtsev–Petviashvili equations (KP equations) in bounded domains. Our aim is to fill the gap in the relevant literature mentioned in a previous paper (J. Xu, Z.Wei, and Y. Ding, Electron. J. Qual. Theory Different. Equat., 2012, No. 68, 1 (2012)). Under more relaxed assumption on the nonlinearity involved in the KP equation, we obtain a new result on the existence of infinitely many high-energy solitary wave solutions via a variant of the fountain theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. David, D. Levi, and P. Winternitz, “Integrable nonlinear equations for water waves in straits of varying depth and width,” Stud. Appl. Math., 76, No. 2, 133–168 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. David, D. Levi, and P. Winternitz, “Solitary waves in shallow seas of variable depth and in marine straits,” Stud. Appl. Math., 80, No. 1, 1–23 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. O. Alves and O. H. Miyagaki, “Existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev–Petviashvili equation,” J. Math. Phys., 58, 081503 (2017).

  4. C. O. Alves, O. H. Miyagaki, and A. Pomponio, “Solitary waves for a class of generalized Kadomtsev–Petviashvili equation in RN with positive and zero mass,” J. Math. Anal. Appl., 477, 523–535 (2019).

  5. P. Isaza and J. Mejía, “Local and global Cauchy problem for the Kadomtsev–Petviashvili equation (KP-II) in Sobolev spaces with negative indices,” Comm. Parti. Different. Equat., 26, No. 5-6, 1027–1054 (2001).

  6. B. Xuan, “Nontrivial stationary solutions to GKP equation in bounded domain,” Appl. Anal., 82, No. 11, 1039–1048 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Lannes, ”Consistency of the KP Approximation,” Proc. of the Fourth Internat. Conf. on Dynamical Systems and Differential Equations, AIMS, Wilmington, NC, USA (2003), pp. 517–525.

  8. D. Lannes and J. C. Saut, “Weakly transverse Boussinesq systems and the KP approximation,” Nonlinearity, 19, No. 12, 2853–2875 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. M. Krichever and S. P. Novikov, “Holomorphic bundles over algebraic curves and nonlinear equations,” Uspekhi Mat. Nauk, 35, No. 6, 47–68 (1980).

    MathSciNet  MATH  Google Scholar 

  10. A. M.Wazwaz, “Multi-front waves for extended form of modified Kadomtsev–Petviashvili equation,” Appl. Math. Mech. (Engl. Ed.), 32, No. 7, 875–880 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Zhenya and Z. Hongqin, “Similarity reductions for 2 + 1-dimensional variable coefficient generalized Kadomtsev–Petviashvili equation,” Appl. Math. Mech. (Eng. Ed.), 21, No. 6, 645–650 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. X. P. Wang, M. J. Ablowitz, and H. Segur, “Wave collapse and instability of solitary waves of a generalized Kadomtsev–Petviashvili equation,” Phys. D, 78, No. 3-4, 241–265 (1994).

  13. V. A. Vladimirov, C. Maçzka, A. Sergyeyev, and S. Skurativskyi, “Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects,” Comm. Nonlin. Sci. Numer. Simul., 19, No. 6, 1770–1782 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. V. Karamysheva and N. A. Magnitskii, “Traveling waves impulses and diffusion chaos in excitable media,” Comm. Nonlin. Sci. Numer. Simul., 19, No. 6, 1742–1745 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. X. Dai and Y. F. Xu, “Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg–Landau equation,” Appl. Math. Mech. (Eng. Ed.), 32, No. 12, 1615–1622 (2011).

  16. Z. Yong, “Strongly oblique interactions between internal solitary waves with the same model,” Appl. Math. Mech. (Eng. Ed.), 18, No. 10, 957–962 (1997).

    Article  MATH  Google Scholar 

  17. B. Xuan, “Multiple stationary solutions to GKP equation in a bounded domain,” Bol. Mat., 9, No. 1, 11–22 (2002).

    MathSciNet  MATH  Google Scholar 

  18. A. D. Bouard and J. C. Saut, “Sur les ondes solitaires des équations de Kadomtsev–Petviashvili,” C. R. Acad. Sci. Paris Sér. I Math., 320, 315–318 (1995).

    MathSciNet  MATH  Google Scholar 

  19. A. D. Bouard and J. C. Saut, “Solitary waves of generalized Kadomtsev–Petviashili equations,” Ann. Inst. H. Poincaré C, Anal. Non Linéaire, 14, No. 2, 211–236 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Willem, Minimax Theorems, Birkhäuser, Boston, MA (1996).

    Book  MATH  Google Scholar 

  21. B. J. Xuan, “Nontrivial solitary waves of GKP equation in multi-dimensional spaces,” Rev. Colomb. Mat., 37, No. 1, 11–23 (2003).

    MathSciNet  MATH  Google Scholar 

  22. Z. Liang and J. Su, “Existence of solitary waves to a generalized Kadomtsev–Petviashvili equation,” Acta Math. Sci., Ser. B (Eng. Ed.), 32, No. 3, 1149–1156 (2012).

  23. J. Xu, Z. Wei, and Y. Ding, “Stationary solutions for a generalized Kadomtsev–Petviashvili equation in bounded domain,” Electron. J. Qual. Theory Different. Equat., 2012, No. 68, 1–18 (2012).

    MathSciNet  MATH  Google Scholar 

  24. W. M. Zou, “Variant fountain theorem and their applications,” Manuscripta Math., 104, No. 3, 343–358 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. X. H. Meng, “Wronskian and Grammian determinant structure solutions for a variable-coefficient forced Kadomtsev–Petviashvili equation in fluid dynamics,” Phys. A, 413, 635–642 (2014).

  26. X. H. Meng, B. Tian, Q. Feng, Z. Z. Yao, and Y. T. Gao, “Painlevé analysis and determinant Solutions of a (3 + 1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation in Wronskian and Grammian form,” Comm. Theor. Phys. (Beijing), 51, No. 6, 1062 (2009).

  27. B. Tian, “Symbolic computation of Bäcklund transformation and exact solutions to the variant Boussinesq model for water waves,” Internat. J. Modern Phys. C, 10, No. 6, 983–987 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  28. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI (1986).

    Book  MATH  Google Scholar 

  29. L. Jeanjean, “On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN,” Proc. Roy. Soc. Edinburgh Sect. A, 129, No. 4, 787–809 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jebari.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 3, pp. 311–322, March, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i3.6253.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebari, R. On the High-Energy Solitary Wave Solutions for a Generalized KP Equation in a Bounded Domain. Ukr Math J 74, 350–363 (2022). https://doi.org/10.1007/s11253-022-02067-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02067-5

Navigation