Skip to main content
Log in

On the Relationships between Some Approaches to the Solution of Kirkwood–Salsburg Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We propose a brief survey devoted to the description of the solutions of Kirkwood–Salsburg equations for correlation functions in the grand canonical ensemble. We establish analytic relationships between the Ruelle operator approach described in detail in [D. Ruelle, Statistical Mechanics. Rigorous Results, Chap. 4, Benjamin, New York (1969)] and the approach developed by Minlos and Pogosyan in [Teor. Mat. Fiz., 31, No. 2, 199 (1977)]. Based on the methods of infinite-dimensional analysis, we propose a more transparent description of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York–Amsterdam (1969).

  2. R. A. Minlos and S. K. Pogosyan, “Estimates of Ursell functions, group functions, and their derivatives,” Teor. Mat. Fiz., 31, No. 2, 199–213 (1977).

    Article  MathSciNet  Google Scholar 

  3. D. Ruelle, “Correlation functions of classical gases,” Ann. Phys., 25, No. 1, 109–120 (1963).

    Article  MathSciNet  Google Scholar 

  4. N. N. Bogolyubov, D. Ya. Petrina, and B. I. Khatset, “Mathematical description of the equilibrium state of classical systems based on the canonical ensemble formalism,” Teor. Mat. Fiz., 1, No. 2, 251–274 (1969).

    Article  Google Scholar 

  5. N. N. Bogolyubov and B. I. Khatset, “On some mathematical problems in the theory of statistical equilibrium,” Dokl. Akad. Nauk SSSR, 66, No. 3, 321–324 (1949).

    Google Scholar 

  6. B. I. Khatset, “Asymptotic expansions in power of the density of distribution function of systems in the state of statistical equilibrium,” Nauk. Zap. Zhytomyr. Ped. Ins., Fiz.-Mat. Ser., 3, 113–139 (1956).

  7. O. Penrose, Convergence of Fugacity Expansions for Classical Systems, W. A. Benjamin, Inc., New York (1967).

  8. R. Fernandez and A. Procacci, “Cluster expansion for abstract polymer models. New bounds from an old approach,” Commun. Math. Phys., 274, 123–140 (2007).

    Article  MathSciNet  Google Scholar 

  9. S. Ramawadhand and S. J. Tate, Virial Expansion Bounds Through Tree Partition Schemes, Preprint, arXiv: 1501.00509 [math-ph] (2015).

  10. Yu. G. Kondratiev, T. Pasurek, and M. Röckner, “Gibbs measures of continuous systems: an analytic approach,” Rev. Math. Phys., 24, No. 10, Article 1250026-1 (2012).

  11. S. Albeverio, Y. G. Kondratiev, and M. Röckner, “Analysis and geometry on configuration spaces,” J. Funct. Anal., 154, No. 2, 444–500 (1998).

    Article  MathSciNet  Google Scholar 

  12. K. R. Parthasarathy, Probability Measure on Metric Spaces. Probability and Mathematical Statistics, Academic Press, New York (1967).

    Book  Google Scholar 

  13. R. L. Dobrushin, “Description of a random field by conditional probabilities and conditions for its regularity,” Teor. Ver. Primen., 13, Issue 2, 201–229 (1968).

    MathSciNet  MATH  Google Scholar 

  14. R. L. Dobrushin, “Gibbs states. General case,” Funkts. Anal. Prilozhen., 3, Issue 1, 27–35 (1969).

  15. O. E. Lanford and D. Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics,” Commun. Math. Phys., 13, No. 3, 194–215 (1969).

    Article  MathSciNet  Google Scholar 

  16. D. Ruelle, “Superstable interactions in classical statistical mechanics,” Commun. Math. Phys., 18, No. 2, 127–159 (1970).

    Article  MathSciNet  Google Scholar 

  17. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics, Gordon & Breach, New York (1995).

  18. T. Kuna, Studies in Configuration Space Analysis and Applications, PhD Thesis, Univ. Bonn (1999).

  19. O. L. Rebenko and V. A. Bolukh, “Infinite-dimensional analysis and statistical mechanics,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], 11, No. 1 (2014), pp. 257–315.

  20. N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946).

  21. Yu. M. Berezansky and Yu. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis, Kluwer Academic Publishers, Dordrecht (1995).

    Book  Google Scholar 

  22. T. C. Dorlas, A. L. Rebenko, and B. Savoie, “Correlation of clusters: partially truncated correlation functions and their decay,” J. Math. Phys., 61, No. 3, Article 033301 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Rebenko.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal,Vol. 73,No.3, pp.381–394, March,2021. Ukrainian DOI: 10.37863/umzh.v73i3.6337.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebenko, A.L. On the Relationships between Some Approaches to the Solution of Kirkwood–Salsburg Equations. Ukr Math J 73, 447–462 (2021). https://doi.org/10.1007/s11253-021-01935-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01935-w

Navigation