Skip to main content
Log in

Bounded Solutions of the Nonlinear Lyapunov Equation and Homoclinic Chaos

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study bounded solutions of a nonlinear Lyapunov-type problem in Banach and Hilbert spaces. Necessary and sufficient conditions for the existence of bounded solutions on the entire axis are obtained under the assumption that the homogeneous equation admits exponential dichotomy on the semiaxes. Conditions for the existence of homoclinic chaos in nonlinear evolution equations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Coppel, “Dichotomies and reducibility,” J. Different. Equat., 3, 500–521 (1967).

    Article  MathSciNet  Google Scholar 

  2. R. J. Sacker and G. R. Sell, “Existence of dichotomies and invariant splittings for linear differential systems. II,” J. Different. Equat., 22, 478–496 (1976).

    Article  MathSciNet  Google Scholar 

  3. R. J. Sacker, “Existence dichotomies and invariant splittings for linear differential systems. IV,” J. Different. Equat., 27, 106–137 (1978).

    Article  MathSciNet  Google Scholar 

  4. R. Sacker, “The splitting index for linear differential systems,” J. Different. Equat., 33, 368–405 (1979).

    Article  MathSciNet  Google Scholar 

  5. R. J. Sacker and G. R. Sell, “Dichotomies for linear evolutionary equations in Banach spaces,” J. Different. Equat., 113, 17–67 (1994).

    Article  MathSciNet  Google Scholar 

  6. A. A. Boichuk, “Solutions of weakly nonlinear differential equations bounded on the entire axis,” Nelin. Kolyv., 2, No. 1, 3–10 (1999).

    MATH  Google Scholar 

  7. H. M. Rodrigues and J. G. Ruas-Filho, “Evolution equations: dichotomies and the Fredholm alternative for bounded solutions,” J. Different. Equat., 119, 263–283 (1995).

    Article  MathSciNet  Google Scholar 

  8. A. G. Baskakov, “On the invertibility and Fredholm property of difference operators,” Mat. Zametki, 67, No. 6, 816–827 (2000).

    Article  MathSciNet  Google Scholar 

  9. A. G. Baskakov, “On the differential and difference Fredholm operators,” Dokl. Ros. Akad. Nauk, 416, No. 2, 156–160 (2007).

    Google Scholar 

  10. Yu. Latushkin and Yu. Tomilov, “Fredholm differential operators with unbounded coefficients,” J. Different. Equat., 208, 388–429 (2005).

    Article  MathSciNet  Google Scholar 

  11. A. A. Boichuk and A. A. Pokutnyi, “Bounded solutions of linear differential equations in a Banach space,” Nelin. Kolyv., 9, No. 1, 3–14 (2006); English translation: Nonlin. Oscillat., 9, No. 1, 1–12 (2006).

    MathSciNet  MATH  Google Scholar 

  12. O. A. Boichuk and O. O. Pokutnyi, “Bounded solutions of weakly nonlinear differential equations in a Banach space,” Nelin. Kolyv., 11, No. 2, 151–159 (2008); English translation: Nonlin. Oscillat., 11, No. 2, 158–167 (2008).

    MathSciNet  MATH  Google Scholar 

  13. A. A. Boichuk and A. A. Pokutnyi, “Bounded solutions of linear perturbed differential equations in a Banach space,” Tatra Mt. Math. Publ., 38, No. 4, 29–40 (2007).

    MathSciNet  MATH  Google Scholar 

  14. A. A. Boichuk and A. A. Pokutnyi, “Exponential dichotomy and bounded solutions of differential equations in the Fréchet space,” Ukr. Mat. Zh., 66, No. 12, 1587–1597 (2014); English translation: Ukr. Math. J., 66, No. 12, 1781–1792 (2015).

    Google Scholar 

  15. A. A. Boichuk and V. F. Zhuravlev, “Dichotomy on semiaxes and the solutions of linear systems with delay bounded on the entire axis,” Nelin. Kolyv., 18, No. 4, 431–445 (2015); English translation: J. Math. Sci., 220, No. 4, 377–393 (2017).

    Google Scholar 

  16. L. Barreira and C. Valls, “Admissibility for nonuniform exponential contractions,” J. Different. Equat., 249, 2889–2904 (2010).

    Article  MathSciNet  Google Scholar 

  17. L. Barreira, “Lyapunov functions,” Milan J. Math., 81, 153–169 (2013).

    Article  MathSciNet  Google Scholar 

  18. P. Atanasova, A. Georgieva, and M. Konstantinov, “Dichotomous solutions of linear impulsive differential equations,” Math. Methods Appl. Sci., 41, No. 5, 1753–1760 (2018).

    Article  MathSciNet  Google Scholar 

  19. S.-N. Chow, X.-B. Lin, and K. J. Palmer, “A shadowing lemma with applications to semilinear parabolic equations,” SIAM J. Math. Anal., 20, 547–557 (1989).

    Article  MathSciNet  Google Scholar 

  20. K. J. Palmer, “Exponential dichotomies and transversal homoclinic points,” J. Different. Equat., 55, 225–256 (1984).

    Article  MathSciNet  Google Scholar 

  21. K. J. Palmer, “Exponential dichotomies, the shadowing lemma and transversal homoclinic points,” Dyn. Rep., 1, 265–306 (1988).

    MathSciNet  MATH  Google Scholar 

  22. V. K. Mel’nikov, “Stability of the center under periodic perturbations,” Tr. Mosk. Mat. Obshch., 12, 1–56 (1964).

    Google Scholar 

  23. E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods in the Analysis of Nonlinear Systems [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  24. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, Walter de Gruyter GmbH, Berlin (2016).

    Book  Google Scholar 

  25. H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht (1996).

    Book  Google Scholar 

  26. E. V. Panasenko and O. O. Pokutnyi, “Bifurcation condition for the solutions of the Lyapunov equation in a Hilbert space,” Nelin. Kolyv., 20, No. 3, 373–390 (2017)); English translation: J. Math. Sci., 236, No. 3, 313–332 (2019).

    MathSciNet  Google Scholar 

  27. I. Ts. Gohberg and N. Ya. Krupnik, Introduction to the Theory of One-Dimensional Singular Integral Operators [in Russian], Shtiintsa, Kishinev (1973).

  28. I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations [in Russian], Gostekhizdat, Moscow (1956).

    MATH  Google Scholar 

  29. S. G. Krein, Functional Analysis [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  30. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  31. I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kyiv (2002).

    MATH  Google Scholar 

  32. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York (1983).

    Book  Google Scholar 

  33. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin (1981).

    Book  Google Scholar 

  34. G. Nicolis and I. Prigogine, Exploring Complexity. An Introduction, W. H. Freeman and Co., New York (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Pokutnyi.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 6, pp. 761–773, June, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boichuk, O.A., Pokutnyi, O.O. Bounded Solutions of the Nonlinear Lyapunov Equation and Homoclinic Chaos. Ukr Math J 71, 869–882 (2019). https://doi.org/10.1007/s11253-019-01685-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01685-w

Navigation