Skip to main content
Log in

A Generalization of Semiperfect Modules

  • Published:
Ukrainian Mathematical Journal Aims and scope

A module M is called radical semiperfect if \( \frac{M}{N} \) has a projective cover whenever Rad(M) ⊆ NM. We study various properties of these modules. It is proved that every left R-module is radical semiperfect if and only if R is left perfect. Moreover, radical lifting modules are defined as a generalization of lifting modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bass, “Finistic dimension and a homological generalization of semiprimary rings,” Trans. Amer. Math. Soc., 95, 466–488 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Büyükaşık and E. Türkmen, “Strongly radical supplemented modules,” Ukr. Mat. Zh., 63, No. 8, 1140–1146 (2011); English translation: Ukr. Math. J., 63, No. 8, 1306–1313 (2012).

  3. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Front. Math., Birkhäuser, Basel (2006).

  4. H. Çalışıcı and A. Pancar, “Cofinitely semiperfect modules,” Sib. Math. J., 46, No. 2, 359–363 (2005).

    Article  MATH  Google Scholar 

  5. F. Kasch, Modules and Rings, Academic Press, London etc. (1982).

    MATH  Google Scholar 

  6. F. Kasch and E. Mares, “Eine kennzeichnung semi-perfekter moduln,” Nagoya Math. J., 27, 525–529 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. H. Mohamed and B. J. Müller, “Continuous and discrete modules,” London Math. Soc. Lecture Note Ser., 147 (1990).

  8. B. N. Türkmen and A. Pancar, “Generalizations of ⊕-supplemented modules,” Ukr. Mat. Zh., 65, No. 4, 612–622 (2013); English translation: Ukr. Math. J., 65, No. 4, 555–564 (2013).

  9. A. Ç. Özcan, A. Harmancı, and P. F. Smith, “Duo modules,” Glasg. Math. J., 48, 533–545 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Wisbauer, Foundations of Module and Ring Theory, Gordon & Breach, Philadelphia (1991).

    MATH  Google Scholar 

  11. W. Xue, “Characterizations of semiperfect and perfect modules,” Publ. Math., 40, No. 1, 115–125 (1996).

    Article  MATH  Google Scholar 

  12. H. Zöschinger, “Komplementierte moduln über Dedekindringen,” J. Algebra, 29, 42–56 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Zöschinger, “Komplemente als direkte Summanden,” Arch. Math. (Basel), 25, 241–253 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Zöschinger, “Moduln, die in jeder Erweiterung ein komplement haben,” Math. Scand., 35, 267–287 (1974).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 1, pp. 104–112, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkmen, B.N. A Generalization of Semiperfect Modules. Ukr Math J 69, 126–137 (2017). https://doi.org/10.1007/s11253-017-1351-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1351-5

Navigation