Skip to main content
Log in

Artemisia pollen dispersal pattern and feasible intervention measures in Hohhot, China

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

More than 50% of pollen allergies in northern China are brought on by Artemisia pollen grains, which are significant aeroallergens worldwide. The diagnosis and prevention of allergy disorders can be enhanced by understanding the dispersal patterns and intervention effects of Artemisia pollen. In this study, Artemisia pollens were examined in two field plots in the suburbs of Hohhot, China. Artemisia pollen concentration in various horizontal and vertical ranges around the pollen plants was recorded every day in the autumn of 2020, and on the basis of this data, the Artemisia pollen release and dispersal pattern in the suburbs of Hohhot were analyzed, and the relationship between meteorological variables and pollen flow was determined during this time. In order to investigate the viability and efficiency of artificial interventions on pollen concentration, various treatments of shrub hedge interception and spraying on the canopy were experimented during the flowering season of Artemisia plants in 2020. This study's goal is to give concise, quantitative visualizations of the Artemisia pollen data dispersal pattern and the impact of meteorological conditions on pollen dispersal, as well as a summary of the implementation strategy for artificial interventions that are appropriate for the study area. The results can serve as a valuable reference for local allergy sufferers and as a foundation for the continued development of a prediction system for allergic Artemisia pollen as well as the management techniques that may assist lower the concentration of allergenic pollen in Hohhot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alcázar P, Galán C, Cariñanos P, Domínguez-Vilches E (1999) Diurnal variation of airborne pollen at two different heights. J Investigat Allergol Clin Immunol 9(2):89–95

    Google Scholar 

  • Bogawski P, Grewling Ł, Nowak M, Smith M, Jackowiak B (2014) Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). Int J Biometeorol 58:1759–1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Borycka K, Kasprzyk I (2014) Evaluation of the effect of weather on concentrations of airborne Artemisia pollen using circular statistic. Acta Agrobotanica 67(1):3–14

    Article  Google Scholar 

  • Burbach GJ, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jenses C, Bonini S, Bousquet J, Bousquet-Rouanet L, Bousquet PJ, Bresciani M et al (2009) GA2LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy 64(10):1507–1515

    Article  CAS  PubMed  Google Scholar 

  • Cai P, Wan T, Han X, Ge Y, Xu Z (2014) Research on pollen of Artemisia frigida spread. Grassl Pratacult 26(4):26–29

    Google Scholar 

  • Campbell ID, McDonald K, Flannigan MD, Kringayark J (1999) Long-distance transport of pollen into the Arctic. Nature 399(6731):29–30

    Article  CAS  Google Scholar 

  • Cariñanos P, Alcázar P, Galán C, Domínguez E (2002) Privet pollen (Ligustrum sp.) as potential cause of pollinosis in the city of Cordoba, south-west Spain. Allergy 57(2):92–97

    Article  PubMed  Google Scholar 

  • Cariñanos P, Guardia CDDL, Algarra JA, Linares CD, Irurita JM (2013) The pollen counts as bioindicator of meteorological trends and tool for assessing the status of endangered species: the case of Artemisia in Sierra Nevada (Spain). Clim Change 119:799–813

    Article  Google Scholar 

  • D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, Van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62(9):976–990

    Article  PubMed  Google Scholar 

  • D’Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, Al-Enezl F, Al-Muhsen S, Ansotegui I, Baena-Cagnani CE et al (2015) Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Amato G, Liccardi M, D’Amato M, Cazzola M (2001) The role of outdoor air pollution and climatic changes on the rising trends in respiratory allergy. Respir Med 95(7):606–611

    Article  PubMed  Google Scholar 

  • Dahl A, Galán C, Hajkova L, Pauling A, Sikoparija B, Smith M, Vokou D (2013) The onset, course and intensity of the pollen season. In: Sofiev M, Bergmann KC (eds) Allergenic pollen: a review of the production, release, distribution and health impacts. Springer, Dordrecht

    Google Scholar 

  • de Weger LA, Bergmann KC, Rantio-Lehtimäki A, Dahl A, Buters J, Déchamp C, Belmonte J, Thibaudon M, Cecchi L, Besancenot JP, Galán C, Waisel Y (2013) Impact of Pollen. In: Sofiev, M.; Bergmann, K.C. Allergenic pollen: A review of the production, release, distribution and health impacts. Springer, Dordrecht

  • Du MY, Ushiyama T, Yonemura S, Shibaike H (2019) Three-dimensional numerical simulations of windbreak effects on pollen dispersal and cross-pollination. IOP Conf Ser Earth Environ Sci 227(5):052002

    Article  Google Scholar 

  • Duhl TR, Zhang R, Guenther AB, Chung SH, Salam MT, House JM, Flagan RC, Avol E, Gilliland FD, Lamb BK et al (2013) The simulator of the timing and magnitude of pollen season (STaMPS) model: a pollen production model for regional emission and transport modeling. Geosci Model Dev Discuss 6(6):2325–2368

    Google Scholar 

  • Fernández-Rodríguez S, Tormo-Molina R, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo Á (2014) Comparative study of the effect of distance on the daily and hourly pollen counts in a city in the south-western Iberian Peninsula. Aerobiologia 30(2):173–187

    Article  Google Scholar 

  • Gao ZS, Fu WY, Sun YM, Gao BY, Wang HY, Liu ML, Luo FM, Zhou X, Jin J, Zhao L et al (2019) Artemisia pollen allergy in China: component-resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy 74(2):284–293

    Article  CAS  PubMed  Google Scholar 

  • Giner MM, García JSC, Sellés JG (1999) Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin. Int J Biometeorol 43(2):51–63

    Article  Google Scholar 

  • Grewling U, Bogawski P, Kostecki U, Nowak M, Frtczak A (2020) Atmospheric exposure to the major Artemisia pollen allergen (art v 1): seasonality, impact of weather, and clinical implications. Sci Total Environ 713(3):136611

    Article  CAS  PubMed  Google Scholar 

  • Grewling Ł, Bogawski P, Smith M (2016) Pollen nightmare: elevated airborne pollen levels at night. Aerobiologia 32:1–4

    Article  Google Scholar 

  • Grewling Ł, Šikoparija B, Skjøth CA, Radišić P, Apatini D, Magyar D, Páldy A, Yankova R, Sommer J, Kasprzyk I et al (2012) Variation in Artemisia pollen seasons in Central and Eastern Europe. Agric For Meteorol 160:48–59

    Article  Google Scholar 

  • Hart ML, Wentworth JE, Bailey JP (1994) The effects of trap height and weather variables on recorded pollen concentration at leicester. Grana 33(2):100–103

    Article  Google Scholar 

  • Helbig N, Vogel B, Vogel H, Fiedler F (2004) Numerical modelling of pollen dispersion on the regional scale. Aerobiologia 3:3–19

    Article  Google Scholar 

  • Hou X, Wang C, Qie G, Wang Y (2010) Temporal and spatial changes of airborne pollen concentration of Artemisia in the suburbs of Beijing. J Northeast Forestry Univ 38(4):77–79

    Google Scholar 

  • Kasprzyk I (2006) Comparative study of seasonal and intradiurnal variation of airborne herbaceous pollen in urban and rural areas. Aerobiologia 22(3):185–195

    Article  Google Scholar 

  • Kasprzyk I, Harmata K, Myszkowska D, Stach A, Stępalska D (2001) Diurnal variation of chosen airborne pollen at five sites in Poland. Aerobiologia 17(4):327–345

    Article  Google Scholar 

  • Keynan N, Waisel Y, Shomer-Ilan A, Goren A, Brener S (1991) Annual variations of air-borne pollen in the Coastal Plain of Israel. Grana 30(2):477–480

    Article  Google Scholar 

  • Laursen SC, Reiners WA, Kelly RD, Gerow KG (2007) Pollen dispersal by Artemisia tridentata (Asteraceae). Int J Biometeorol 51(6):465–481

    Article  CAS  PubMed  Google Scholar 

  • Lee YW, Choi SY, Lee EK, Sohn JH, Park JW, Hong CS (2007) Cross-allergenicity of pollens from the Compositae family: Artemisia vulgaris, Dendranthema grandiflorum, and Taraxacum officinale. Ann Allergy Asthma Immunol 99(6):526–533

    Article  CAS  PubMed  Google Scholar 

  • Lin Y (1995) On the floristics of Artemisia L. in the world. Bull Bot Res 15(1):1–37

    Google Scholar 

  • Lou H, Ma S, Zhao Y, Cao F, He F, Liu Z, Bousquet J, Wang C, Zhang L, Bachert C (2017) Sensitization patterns and minimum screening panels for aeroallergens in self-reported allergic rhinitis in China. Sci Rep 7:9286

    Article  PubMed  PubMed Central  Google Scholar 

  • Majkowska-Wojciechowska B, Pełka J, Korzon L, Kozłowska A, Kaczała M, Jarzebska M, Gwardys T, Kowalski ML (2007) Prevalence of allergy, patterns of allergic sensitization and allergy risk factors in rural and urban children. Allergy 62:1044–1150

    Article  CAS  PubMed  Google Scholar 

  • Mcinnes RN, Hemming D, Burgess P, Lyndsay D, Osborne NJ, Skjøth CA, Thomas S, Vardoulakis S (2017) Mapping allergenic pollen vegetation in UK to study environmental exposure and human health. Sci Total Environ 599–600:483–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller-Germann I, Pickersgill DA, Paulsen H, Alberternst B, Pöschl U, Fröhlich-Nowoisky J, Despre´s VR (2017) Allergenic Asteraceae in air particulate matter: quantitative DNA analysis of mugwort and ragweed. Aerobiologia 33:493–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Norris-Hill J, Emberlin J (1993) The incidence of increased pollen concentrations during rainfall in the air of London. Aerobiologia 9(1):27–32

    Article  Google Scholar 

  • Peel R, Kennedy R, Smith M, Hertel O (2014) Do urban canyons influence street level grass pollen concentrations? Int J Biometeorol 58(6):1317–1325

    Article  PubMed  Google Scholar 

  • Pérez-Badia R, Rapp A, Vaquero C, Fernández-González F (2011) Aerobiological study in east-central Iberian Peninsula: pollen diversity and dynamics for major taxa. Ann Agric Environ Med 18(1):99–111

    PubMed  Google Scholar 

  • Priftis KN, Anthracopoulos MB, Nikolaou-Papanagiotou A, Matziou V, Paliatsos A, Tzavelas G, Nicolaidou P, Mantzouranis EC (2007) Increased sensitization in urban vs. rural environment-rural protection or an urban living effect? Pediatr Allergy Immunol 18(3):209–216

    Article  PubMed  Google Scholar 

  • Puc M (2006) Ragweed and mugwort pollen in Szczecin, Poland. Aerobiologia 22(1):67–78

    Article  Google Scholar 

  • Puc M (2012) Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen. Ann Agric Environ Med 19(4):660–665

    PubMed  Google Scholar 

  • Qin X, Li X, Sun X, Meng L, Wang X (2017) Transport pathway and source area for Artemisia pollen in Beijing, China. Int J Biometeorol 63(5):687–699

    Article  PubMed  Google Scholar 

  • Ranta H, Kubin E, Siljamo P, Sofiev M, Linkosalo T, Oksanen A, Bondestam K (2006) Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana 45(4):297–304

    Article  Google Scholar 

  • Riedler J, Braun-Fahrlnder C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E (2001) Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358(9288):1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Robichaud A, Comtois P (2020) Numerical modelling of birch pollen dispersion in Canada. Environ Res 194(4):110554

    PubMed  Google Scholar 

  • Ščevková J, Dušička J, Mičieta K, Somorčík J (2015) Diurnal variation in airborne pollen concentration of six allergenic tree taxa and its relationship with meteorological parameters. Aerobiologia 31(4):457–468

    Article  Google Scholar 

  • Silverberg JI, Braunstein M, Lee-Wong M (2015) Association between climate factors, pollen counts, and childhood hay fever prevalence in the United States. J Allergy Clin Immunol 135(2):463–469

    Article  PubMed  Google Scholar 

  • Skjøth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen KM, Hertel O, Frohn LM, Christensen JH (2008) Copenhagen - A significant source of birch (Betula) pollen? Int J Biometeorol 52(6):453–462

    Article  PubMed  Google Scholar 

  • So HJ, Moon SJ, Hwang SY, Kim JH, Jang HJ, Jo JH, Sung TJ, Lim DH (2017) Characteristics of airborne pollen in Incheon and Seoul (2015–2016). Asia Pac Allergy 7(3):138–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimäki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50(6):392–402

    Article  CAS  PubMed  Google Scholar 

  • Spieksma FTM, van Noort P, Nikkels H (2000) Influence of nearby stands of Artemisia on street-level versus roof-top-level ratio’s of airborne pollen quantities. Aerobiologia 16:21–24

    Article  Google Scholar 

  • Stach A, García-Mozo H, Prieto-Baena JC, Czarnecka-Operacz M, Jenerowicz D, Silny A, Galán C (2007) Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995–2004. J Investig Allergol Clin Immunol 17(1):39–47

    CAS  PubMed  Google Scholar 

  • Subba RC, Reddi NS (2012) Pollen production in some Anemophilous Angiosperms. Grana 25:55–61

    Google Scholar 

  • Sun J (2009) A survey of Artemisia, sunflower and other pollen in summer and autumn in Hohhot and its’s relationship to pollinosis. Inner Mongolia Medical College

  • Sung M, Kim SW, Kim JH, Lim DH (2017) Regional difference of causative pollen in children with allergic rhinitis. J Korean Med Sci 32(6):926–932

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang R, Sun JL, Yin J, Li Z (2015) Artemisia allergy research in China. Biomed Res Int 6:179426

    Google Scholar 

  • Velasco-Jiménez MJ, Alcázar P, Domínguez-Vilches E, Galán C (2013) Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south western Spain). Aerobiologia 29:113–120

    Article  Google Scholar 

  • Wahl PGV, Puls KE (1989) The emission of mugwort pollen (Artemisia vulgaris L.) and its flight in the air. Aerobiologia 5(1):55–63

    Article  Google Scholar 

  • Weryszko-Chmielewska E, Kaszewski BM, Piotrowska K (2006) Mugwort (Artemisia L.) pollen in aeroplankton of Lublin, 2001–2005. Acta Agrobotanica 59(2):121–130

    Article  Google Scholar 

  • Wu J, Song L, Liu S (2013) Investigation on airborne allergenic pollen and analysis on clinical data of pollinosis in Hohhot. Occupation and Health 29:266–269

    Google Scholar 

  • Xin J, Ouyang Z, Zheng H, Wang X, Hong M (2007) Allergenic pollen plants and their influential factors in urban areas. Acta Ecol Sin 27(9):3820–3827

    Article  CAS  Google Scholar 

  • Yao L, Zhang H (2009) Concentration of airborne pollen in Beijing city with burkard sampler. J Clin Otorhinolaryngol Head Neck Surg 23:913–916

    Google Scholar 

  • Ye S, Zhang J, Gu R (1991) A national survey of airborne and allergenic pollen in China. Beijing Publishing House, Beijing

    Google Scholar 

  • Zhang Y, Bielory L, Cai T, Mi Z, Georgopoulos P (2015) Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos Environ 103:297–306

    Article  CAS  Google Scholar 

  • Zhang Y, Steiner AL (2022) Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat Commun 13:1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zink K, Pauling A, Rotach MW, Vogel H, Kaufmann P, Clot B (2013) EMPOL 1.0: a new parameterization of pollen emission in numerical weather prediction models. Geosci Model Dev Discuss 6:1961–1975

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Feng Yan, Yajing Lu, Min Wang, and Yanan Lu for their help with field work.

Funding

This work was supported by the National Natural Science Foundation of China (NO: 31901170; NO: 32260279), the Central Guidance for Local Science and Technology Development Projects (NO: 2022ZY0137), the Inner Mongolia Natural Science Foundation (NO: 2019MS03082), the Inner Mongolia University of Technology Foundation (NO: BS201941; NO: 2020217).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yange Wang wrote the main manuscript text and prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 1011. All authors finished the field work and reviewed the manuscript.

Corresponding author

Correspondence to Yange Wang.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, S., Jie, M. et al. Artemisia pollen dispersal pattern and feasible intervention measures in Hohhot, China. Urban Ecosyst 26, 1397–1411 (2023). https://doi.org/10.1007/s11252-023-01389-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-023-01389-x

Keywords

Navigation