Ahlstrøm AP, Bjørkelo K, Frydenlund J (2014) AR5 klassifikasjonssystem. Klassifikasjon av arealressurser. Norsk institutt for skog og landskap report 06/2014. ISBN: 978–82–311–0211–3
Amano T, Lamming JDL, Sutherland WJ (2016) Spatial gaps in global biodiversity information and the role of citizen science. Bioscience 66:393–400. https://doi.org/10.1093/biosci/biw022
Article
Google Scholar
Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, MacGregor-Fors I, McDonnel M, Mörtberg U, Pyšek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc b: Biol Sci 281:20133330. https://doi.org/10.1098/rspb.2013.3330
Article
Google Scholar
Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol and Biogeogr 21:1223–1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x
Article
Google Scholar
Baselga A, Orme CDL (2012) Betapart: An R package for the study of beta diversity. Methods Ecol Evol 3:808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x
Article
Google Scholar
Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS (2020) Birds of the World. Cornell Laboratory of Ornithology, Ithaca, NY, USA. https://birdsoftheworld.org/bow/home
Bivand RS, Pebesma E, Gómez-Rubio V (2013) Applied spatial data analysis with R (Second edi). Springer, New York
Book
Google Scholar
Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519. https://doi.org/10.2307/2269387
Article
Google Scholar
Bonthoux S, Barnagaud J, Goulard M, Balent G (2013) Contrasting spatial and temporal responses of bird communities to landscape changes. Oecologia 172:563–574. https://doi.org/10.1007/s00442-012-2498-2
Article
PubMed
Google Scholar
Bregman TP, Lees AC, MacGregor HEA, Darski B, de Moura NG, Aleixo A, Barlow J, Tobias JA (2016) Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc R Soc b: Biol Sci 283:20161289. https://doi.org/10.1098/rspb.2016.1289
Article
Google Scholar
Brooks TM, Pimm SL, Oyugi JO (1999) Time lag between deforestation and bird extinction in tropical forest fragments. Conserv Biol 13:1140–1150. http://www.jstor.org/stable/2641747
Buitrago L (2020) GBIF issues & flags. GBIF data blog. https://data-blog.gbif.org/post/issues-and-flags/. Accessed on 06 Jun 2022
Burnham KP, Anderson DR (2004) Multimodel inference: Understanding AIC and BIC in model selection. Sociol Method Res 33:261–304. https://doi.org/10.1177/2F0049124104268644
Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urb Plan 74:46–69. https://doi.org/10.1016/j.landurbplan.2004.08.007
Article
Google Scholar
Climate-Data.org (2022) Klima Trondheim (Norge). https://no.climate-data.org/europa/norge/sør-trøndelag-fylke/trondheim-707/. Accessed 30 Apr 2022
Concepción ED, Moretti M, Altermatt F, Nobis MP, Obrist MK (2015) Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 124:1571–1582. https://doi.org/10.1111/oik.02166
Article
Google Scholar
Conole LE, Kirkpatrick JB (2011) Functional and spatial differentiation of urban bird assemblages at the landscape scale. Landsc Urb Plan 100:11–23. https://doi.org/10.1016/j.landurbplan.2010.11.007
Article
Google Scholar
Croci S, Butet A, Clergau P (2008) Does urbanization filter birds on the basis of their biological traits? The Condor 110:223–240. https://doi.org/10.1525/cond.2008.8409
Article
Google Scholar
Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin YJ, Visseren-Hamakers I, Willis KJ, Zayas CN (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 13:366. https://doi.org/10.1126/science.aax3100
CAS
Article
Google Scholar
Dornelas M et al (2018) BioTIME: A database of biodiversity time series for the Anthropocene. Glob Ecol Biogeogr 27:760–786. https://doi.org/10.1111/geb.12729
Article
PubMed
PubMed Central
Google Scholar
Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendestad M, Seto KC, Wilkinson K (2013) Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. Springer, Dordrecht Heidelberg
Google Scholar
Elmqvist T, Gómez-Baggethun E, Langemeyer J (2016) Ecosystem services provided by urban green infrastructure. In: Potschin M, Haines-Young R, Fish R, Kerry Turner R (2016) Routledge Handbook of Ecosystem Services, pp 452–468
Ernoult A, Tremauville Y, Cellier C, Margerie P, Langlois E, Alar D (2006) Potential landscape drivers of biodiversity components in a flood plain: Past or present patterns? Biol Conserv 127:1–17. https://doi.org/10.1016/j.biocon.2005.07.008
Article
Google Scholar
Evans BS, Reitsma R, Hurlbert AH, Marra PP (2018) Environmental filtering of avian communities along a rural-to-urban gradient in Greater Washington, D.C., USA. Ecosphere 9: e02402. https://doi.org/10.1002/ecs2.2402
Evans KL, Newson SE, Gaston KJ (2009) Habitat influences on urban avian assemblages. Ibis 151:19–39. https://doi.org/10.1111/j.1474-919X.2008.00898.x
Article
Google Scholar
Evans KL, Chamberlain DE, Hatchwell BJ, Gregory RD, Gaston KJ (2011) What makes an urban bird? Glob Change Biol 17:32–44. https://doi.org/10.1111/j.1365-2486.2010.02247.x
Article
Google Scholar
Gaiji S, Chavan V, Ariño AH, Otegui J, Hobern D, Sood R, Robles E (2013) Content assessment of the primary biodiversity data published through GBIF network: Status, challenges and potentials. Biodiversity Informatics 8:94–172. https://doi.org/10.17161/bi.v8i2.4124
Gaston KJ (2005) Biodiversity and extinction: species and people. Prog Phys Geogr 29:239–247. https://doi.org/10.1191/2F0309133305pp445pr
GBIF.org (2019) GBIF home page. https://www.gbif.org/. Accessed on 26 Apr 2020
Godet L, Harmange C, Marquet M, Joyeux E, Fournier J (2018) Differences in home-range sizes of a bird species in its original, refuge and substitution habitats: challenges to conservation in anthropogenic habitats. Biodivers Conserv 27:719–732. https://doi.org/10.1007/s10531-017-1460-3
Article
Google Scholar
Hagen EO, Hagen O, Ibáñez-Álamo JDm Petchey OL, Evans KL, (2017) Impacts of urban areas and their characteristics on avian functional diversity. Front Ecol Evol 5:1–15. https://doi.org/10.3389/fevo.2017.00084
Article
Google Scholar
Hausner VH, Yoccoz NG, Ims RA (2003) Selecting indicator traits for monitoring land use impacts: birds in northern coastal birch forests. Ecol Appl, 13: 999–1012. https://www.jstor.org/stable/4134738
Hijmans RJ (2020) raster: geographic data analysis and modeling. R package. https://CRAN.R-project.org/package=raster
Husté A, Boulinier T (2011) Determinants of bird community composition on patches in the suburbs of Paris, France. Biol Conserv 144:243–252. https://doi.org/10.1016/j.biocon.2010.08.022
Article
Google Scholar
Ikin K, Knight E, Lindenmayer DB, Fischer J, Manning AD (2012) Linking bird species traits to vegetation characteristics in a future urban development zone: Implications for urban planning. Urb Ecosyst 15:961–977. https://doi.org/10.1007/s11252-012-0247-2
Article
Google Scholar
IPBES (2018) The IPBES regional assessment report on biodiversity and ecosystem services for Europe and Central Asia. Rounsevell M, Fischer M, Torre-Marin Rando A, Mader A. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany
IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Roy ChowdhuryR, Shin YJ, Visseren-Hamakers IJ, Willis KJ, Zayas CN (eds.). IPBES secretariat, Bonn, Germany
Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB (2014) Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol Evol 5:1052–1060. https://doi.org/10.1111/2041-210X.12254
Article
Google Scholar
Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:419–431. https://doi.org/10.1111/j.1461-0248.2008.01173.x
Article
PubMed
Google Scholar
Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the City : Can anyone become an ’Urban Exploiter’? J Biogeogr 34:638–651. https://doi.org/10.1111/j.1365-2699.2006.01638.x
Article
Google Scholar
Kartverket (2019) SOSI-standarder. https://kartverket.no/geodataarbeid/standarder/sosi/. Accessed on 04 May 2022
Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199. https://doi.org/10.1016/j.tree.2005.12.006
Article
PubMed
Google Scholar
Kinnunen RP, Fraser KC, Schmidt C, Garroway CJ (2022) The socioeconomic status of cities covaries with avian life-history strategies. Ecosphere 13:e3918. https://doi.org/10.1002/ecs2.3918
Article
Google Scholar
Kommunal- og moderniseringsdepartementet (2020) Planlegging for spredt bolig- , fritids- og næringsbebyggelse i landbruks- , natur- , frilufts- og reindriftsområder. https://www.regjeringen.no/no/dokumenter/planlegging-for-spredt-bolig--fritids--og-naringsbebyggelse-i-landbruks--natur--frilufts--og-reindriftsomrader-lnfr-omrader/id2696910/?ch=1. Accessed 04 May 2022
La Sorte FA, Lepczyk CA, Aronson MFJ, Goddard MA, Hedblom M, Katti M, MacGregor-Fors I, Mörtberg U, Nilon CH, Warren PS, Williams NSG, Yang J (2018) The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Divers Distrib 24:928–938. https://doi.org/10.1111/ddi.12738
Article
Google Scholar
MacLean SA, Rios Dominguez AF, de Valpine P, Beissinger SR (2018) A century of climate and land-use change cause species turnover without loss of beta diversity in California’s Central Valley. Glob Change Biol 24:5882–5894. https://doi.org/10.1111/gcb.14458
Article
Google Scholar
Magurran AE, Dornelas M, Moyes F, Henderson PA (2019) Temporal β diversity—A macroecological perspective. Glob Ecol Biogeogr 28:1949–1960. https://doi.org/10.1111/geb.13026
Article
Google Scholar
McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. https://doi.org/10.1016/j.biocon.2005.09.005
Article
Google Scholar
Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Teixeira AMG, Pardini R (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177. https://doi.org/10.1016/j.biocon.2009.01.033
Article
Google Scholar
Miljøenheten (2020) Kommunedelplan for naturmangfold 2021–2032. Forslag til planprogram. https://www.trondheim.kommune.no/globalassets/10-bilder-og-filer/10-byutvikling/miljoenheten/klima-og-energi/kdp-naturmangfold_forslag-til-planprogram_horing-2020.pdf. Accessed 04 May 2022
Moen A (1999) National atlas of Norway: vegetation . Norwegian Mapping Authority, Hønefoss
Myhrvold NP, Baldridge E, Chan B, Sivam D, Freeman DL, Morgan Ernest SK (2015) An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecol 96:3109–3109. https://doi.org/10.1890/15-0846R.1
Article
Google Scholar
Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progr Phys Geogr 34:3–22. https://doi.org/10.1177/2F0309133309355630
Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Philips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324
CAS
Article
PubMed
Google Scholar
Newbold T, Hudson LN, Contu S, Hill SLL, Beck J, Liu Y, Meyer C, Philips HRP, Scharlemann JPW, Purvis A (2018) Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol 16:1–25. https://doi.org/10.1371/journal.pbio.2006841
CAS
Article
Google Scholar
Norsk Ornitologisk Forening (Birdlife Norway) (2020) Fuglekunnskap, Norske fugler. https://www.birdlife.no/fuglekunnskap/fugleatlas/. Accessed 04 May 2022
Norwegian Institute of Bioeconomy Research (2018) AR5. https://www.nibio.no/tema/jord/arealressurser/arealressurskart-ar5/. Accessed 04 May 2022
Padayachee AL, Irlich UM, Faulkner KT, Gaertner M, Proches S, Wilson JRU, Rouget M (2017) How do invasive species travel to and through urban environments? Biol Invasions 19:3557–3570. https://doi.org/10.1007/s10530-017-1596-9
Article
Google Scholar
Palacio FX, Ibañez LM, Maragliano RE, Montalti D (2018) Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Can J Zool 96:1114–1121. https://doi.org/10.1139/cjz-2018-0008
Article
Google Scholar
Pebesma E (2018) Simple features for R: standardized support for spatial vector data. The R J 10:439–446. https://doi.org/10.32614/RJ-2018-009
Pebesma E, Bivand R (2005) Classes and methods for spatial data in R R News 5. https://cran.r-project.org/doc/Rnews/
Petersen TK, Speed JDM, Grøtan V, Austrheim G (2020) Urban aliens and threatened near-naturals : Land-cover affects the species richness of alien- and threatened species in an urban-rural setting. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-65459-2
CAS
Article
Google Scholar
Petersen TK, Speed JDM, Grøtan V, Austrheim, (2021a) Competitors and ruderals go to town: plant community composition and function along an urbanisation gradient. N J Bot 39:1–14. https://doi.org/10.1111/njb.03026
Article
Google Scholar
Petersen TK, Speed JDM, Grøtan V, Austrheim G (2021b) Species data for understanding biodiversity dynamics : The what, where and when of species occurrence data collection. Ecol Solut Evid 2:1–17. https://doi.org/10.1002/2688-8319.12048
Article
Google Scholar
Pinho P, Correia O, Lecoq M, Munzi S, Vasconcelos S, Gonçalves P, Rebelo R, Antunes C, Silva P, Freitas C, Lopes N, Santos-Reis M, Branquinho C (2016) Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach. Environ Res 147:601–610. https://doi.org/10.1016/j.envres.2015.12.025
CAS
Article
PubMed
Google Scholar
Powney GD, Isaac NJB (2015) Beyond maps: A review of the applications of biological records. Biol J Linnean Soc 115:532–542. https://doi.org/10.1111/bij.12517
Article
Google Scholar
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–188. https://doi.org/10.1016/j.tree.2011.10.008
Article
PubMed
Google Scholar
Rittenhouse CD, Pidgeon AM, Albright TP, Culbert PD, Clayton MK, Flather CH, Masek JG, Radeloff VC (2012) Land-cover change and avian diversity in the conterminous United States. Conserv Biol 26:821–829. https://www.jstor.org/stable/23255335
Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737. https://doi.org/10.1146/annurev.ecolsys.38.091206.095737
Article
Google Scholar
Rousset F, Ferdy JB (2014) Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37:781–790. https://doi.org/10.1111/ecog.00566
Article
Google Scholar
Sala OE, Chapin S, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100 global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770
CAS
Article
PubMed
Google Scholar
Sekercioglu CH (2006) Increasing awareness of avian ecological function. Trends Ecol Evol 21:464–471. https://doi.org/10.1016/j.tree.2006.05.007
Article
PubMed
Google Scholar
Sepp T, McGraw KJ, Kaasik A, Giraudeau M (2018) A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life? Glob Change Biol 24:1452–1469. https://doi.org/10.1111/gcb.13969
Article
Google Scholar
Speed JDM, Bendiksby M, Finstad AG, Hassel K, Kolstad AL, Prestø T (2018) Contrasting spatial, temporal and environmental patterns in observation and specimen based species occurrence data. PLoS Biol 13:1–17. https://doi.org/10.1371/journal.pone.0196417
CAS
Article
Google Scholar
Statistics Norway (2020) Statistisk Sentralbyrå. https://www.ssb.no/. Accessed 04 May 2022
Tiago P, Ceia-Hasse A, Marques TA, Capinha C, Pereira HM (2017) Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-13130-8
CAS
Article
Google Scholar
Trondheim K (2013) Temaplan for naturmiljøet i Trondheim. https://www.trondheim.kommune.no/tema/bygg-kart-og-eiendom/arealplaner/temaplaner-prosjekter-og-utredninger/markaplanen/temaplan-for-naturmiljoet/. Accessed 04 May 2022
Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F (2017) Taxonomic bias in biodiversity data and societal preferences. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-09084-6
CAS
Article
Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2019) World urbanization prospects: the 2018 revision (ST/ESA/SER.A/420). New York: United Nations
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95:E095-178. https://doi.org/10.1890/13-1917.1
Article
Google Scholar