Skip to main content
Log in

Developing argumentation skills in mathematics through computer-supported collaborative learning: the role of transactivity

  • Published:
Instructional Science Aims and scope Submit manuscript

Abstract

Collaboration scripts and heuristic worked examples are effective means to scaffold university freshmen’s mathematical argumentation skills. Yet, which collaborative learning processes are responsible for these effects has remained unclear. Learners presumably will gain the most out of collaboration if the collaborators refer to each other’s contributions in a dialectic way (dialectic transactivity). Learners also may refer to each other’s contributions in a dialogic way (dialogic transactivity). Alternatively, learners may not refer to each other’s contributions at all, but still construct knowledge (constructive activities). This article investigates the extent to which constructive activities, dialogic transactivity, and dialectic transactivity generated by either the learner or the learning partner can explain the positive effects of collaboration scripts and heuristic worked examples on the learners’ disposition to use argumentation skills. We conducted a 2 × 2 experiment with the factors collaboration script and heuristic worked examples with N = 101 math teacher students. Results showed that the learners’ engagement in self-generated dialectic transactivity (i.e., responding to the learning partner’s contribution in an argumentative way by critiquing and/or integrating their learning partner’s contributions) mediated the effects of both scaffolds on their disposition to use argumentation skills, whereas partner-generated dialectic transactivity or any other measured collaborative learning activity did not. To support the disposition to use argumentation skills in mathematics, learning environments should thus be designed in a way to help learners display dialectic transactivity. Future research should investigate how learners might better benefit from the dialectic transactivity generated by their learning partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, J. R. (1996). A simple theory of complex cognition. American Psychologist, 51(4), 355–365. doi:10.1037/0003-066X.51.4.355.

    Article  Google Scholar 

  • Asterhan, C. S. C., & Schwarz, B. B. (2009). Argumentation and explanation in conceptual change: Indications from protocol analyses of peer-to-peer dialog. Cognitive Science, 33(3), 374–400. doi:10.1111/j.1551-6709.2009.01017.x.

    Article  Google Scholar 

  • Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70(2), 181–214. doi:10.3102/00346543070002181.

    Article  Google Scholar 

  • Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education. Preuve: International Newsletter on the Teaching and Learning of Mathematical Proof, (July/August 1999). Retrieved from http://www.lettredelapreuve.it/OldPreuve/Newsletter/990708Theme/990708ThemeUK.html.

  • Chi, M. T. H. (2009). Active–constructive–interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73–105. doi:10.1111/j.1756-8765.2008.01005.x.

    Article  Google Scholar 

  • Chi, M. T. H., Roy, M., & Hausmann, R. G. M. (2008). Observing tutorial dialogues collaboratively: Insights about human tutoring effectiveness from vicarious learning. Cognitive Science, 32(2), 301–341. doi:10.1080/03640210701863396.

    Article  Google Scholar 

  • Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219–243. doi:10.1080/00461520.2014.965823.

    Article  Google Scholar 

  • Choi, I., Land, S. M., & Turgeon, A. J. (2005). Scaffolding peer-questioning strategies to facilitate metacognition during online small group discussion. Instructional Science, 33(5–6), 483–511. doi:10.1007/s11251-005-1277-4.

    Article  Google Scholar 

  • Clark, D. B., & Sampson, V. D. (2007). Personally seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253–277. doi:10.1080/09500690600560944.

    Article  Google Scholar 

  • Cress, U. (2008). The need for considering multilevel analysis in CSCL research—An appeal for the use of more advanced statistical methods. International Journal of Computer-Supported Collaborative Learning, 3(1), 69–84. doi:10.1007/s11412-007-9032-2.

    Article  Google Scholar 

  • De Vries, E., Lund, K., & Baker, M. (2002). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. The Journal of the Learning Sciences, 11(1), 63–103. doi:10.1207/S15327809JLS1101_3.

    Article  Google Scholar 

  • De Wever, B., Van Keer, H., Schellens, T., & Valcke, M. (2010). Structuring asynchronous discussion groups: Comparing scripting by assigning roles with regulation by cross-age peer tutors. Learning and Instruction, 20(5), 349–360. doi:10.1016/j.learninstruc.2009.03.001.

    Article  Google Scholar 

  • Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported Collaborative Learning, 3(1), 5–23. doi:10.1007/s11412-007-9033-1.

    Article  Google Scholar 

  • Ertl, B., Kopp, B., & Mandl, H. (2006). Fostering collaborative knowledge construction in case-based learning in videoconferencing. Journal of Educational Computing Research, 35(4), 377–397. doi:10.2190/A0LP-482N-0063-J480.

    Article  Google Scholar 

  • Fischer, F., Kollar, I., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1), 56–66. doi:10.1080/00461520.2012.748005.

    Article  Google Scholar 

  • Forman, E. A., Larreamendy-Joerns, J., Stein, M. K., & Brown, C. A. (1998). “You’re going to want to find out which and prove it”: Collective argumentation in a mathematics classroom. Learning and Instruction, 8(6), 527–548. doi:10.1016/S0959-4752(98)00033-4.

    Article  Google Scholar 

  • Hayes, A. F., & Preacher, K. J. (2014). Statistical mediation analysis with a multicategorical independent variable. British Journal of Mathematical and Statistical Psychology, 67(3), 451–470. doi:10.1111/bmsp.12028.

    Article  Google Scholar 

  • Heinze, A., Reiss, K., & Rudolph, F. (2005). Mathematics achievement and interest in mathematics from a differential perspective. ZDM The International Journal on Mathematics Education, 37(3), 212–220. doi:10.1007/s11858-005-0011-7.

    Article  Google Scholar 

  • Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: Learning from heuristic examples and how it can be supported. Learning and Instruction, 18(1), 54–65. doi:10.1016/j.learninstruc.2006.10.008.

    Article  Google Scholar 

  • Hron, A., Cress, U., Hammer, K., & Friedrich, H. F. (2007). Fostering collaborative knowledge construction in a video-based learning setting: Effects of a shared workspace and content-specific graphical representation. British Journal of Educational Technology, 38(2), 236–248. doi:10.1111/j.1467-8535.2006.00619.x.

    Article  Google Scholar 

  • Hron, A., Hesse, F. W., Cress, U., & Giovis, C. (2000). Implicit and explicit dialogue structuring in virtual learning groups. British Journal of Educational Psychology, 70(4), 53–64. doi:10.1348/000709900157967.

    Article  Google Scholar 

  • Ismail, H. N., & Alexander, J. M. (2005). Learning within scripted and nonscripted peer-tutoring sessions: The Malaysian context. The Journal of Educational Research, 99(2), 67–77. doi:10.3200/JOER.99.2.67-77.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792. doi:10.1002/1098-237X(200011)84:6<757:AID-SCE5>3.0.CO;2-F.

    Article  Google Scholar 

  • King, A. (1997). ASK to THINK-TEL WHY: A model of transactive peer tutoring for scaffolding higher level complex learning. Educational Psychologist, 32(4), 221–235. doi:10.1207/s15326985ep3204_3.

    Article  Google Scholar 

  • King, A. (2007). Scripting collaborative learning processes: A cognitive perspective. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting computer-supported collaborative learning—Cognitive, computational, and educational perspectives (pp. 13–37). New York, NY: Springer.

    Google Scholar 

  • Kollar, I., Fischer, F., & Hesse, F. W. (2006). Collaboration scripts—A conceptual analysis. Educational Psychology Review, 18(2), 159–185. doi:10.1007/s10648-006-9007-2.

    Article  Google Scholar 

  • Kollar, I., Ufer, S., Reichersdorfer, E., Vogel, F., Fischer, F., & Reiss, K. (2014). Effects of collaboration scripts and heuristic worked examples on the acquisition of mathematical argumentation skills of teacher students with different levels of prior achievement. Learning and Instruction, 32(1), 22–36. doi:10.1016/j.learninstruc.2014.01.003.

    Article  Google Scholar 

  • Kopp, B., & Mandl, H. (2011). Fostering argument justification using collaboration scripts and content schemes. Learning & Instruction, 21(5), 636–649. doi:10.1016/j.learninstruc.2011.02.001.

    Article  Google Scholar 

  • Kuhn, D., & Crowell, A. (2011). Dialogic argumentation as a vehicle for developing young adolescents’ thinking. Psychological Science, 22(4), 545–552. doi:10.1177/0956797611402512.

    Article  Google Scholar 

  • Leitão, S. (2000). The potential of argument in knowledge building. Human Development, 43(6), 332–360. doi:10.1159/000022695.

    Article  Google Scholar 

  • Molinari, G., Sangin, M., Dillenbourg, P., & Nüssli, M.-A. (2009). Knowledge interdependence with the partner, accuracy of mutual knowledge model and computer-supported collaborative learning. European Journal of Psychology of Education, 24(2), 129–144. doi:10.1007/BF03173006.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics (Ed.). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.

    Google Scholar 

  • Noroozi, O., Biemans, H. J. A., Weinberger, A., Mulder, M., & Chizari, M. (2013). Scripting for construction of a transactive memory system in a multidisciplinary CSCL environment. Learning & Instruction, 25, 1–12. doi:10.1016/j.learninstruc.2012.10.002.

    Article  Google Scholar 

  • Noroozi, O., Weinberger, A., Biemans, H. J. A., Mulder, M., & Chizari, M. (2012). Argumentation-based computer supported collaborative learning (ABCSCL). A systematic review and synthesis of fifteen years of research. Educational Research Review, 7(2), 79–106. doi:10.1016/j.edurev.2011.11.006.

    Article  Google Scholar 

  • Paas, F. G. W. C., & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122–133. doi:10.1037/0022-0663.86.1.122.

    Article  Google Scholar 

  • Pease, A., Smaill, A., Colton, S., & Lee, J. (2009). Bridging the gap between argumentation theory and the philosophy of mathematics. Foundation of Science, 14(1–2), 111–135. doi:10.1007/s10699-008-9150-y.

    Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731. doi:10.3758/BF03206553.

    Article  Google Scholar 

  • Reiss, K. M., Heinze, A., Renkl, A., & Groß, C. (2008). Reasoning and proof in geometry: Effects of a learning environment based on heuristic worked-out examples. ZDM The International Journal on Mathematics Education, 40(3), 455–467. doi:10.1007/s11858-008-0105-0.

    Article  Google Scholar 

  • Reiss, K., & Renkl, A. (2002). Learning to prove: The idea of heuristic examples. ZDM The International Journal on Mathematics Education, 34(1), 29–35. doi:10.1007/BF02655690.

    Google Scholar 

  • Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. doi:10.1002/tea.20009.

    Article  Google Scholar 

  • Scheuer, O., McLaren, B., Weinberger, A., & Niebuhr, S. (2013). Promoting critical, elaborative discussions through a collaboration script and argument diagrams. Instructional Science42(2), 127–157. doi:10.1007/s11251-013-9274-5.

    Article  Google Scholar 

  • Schwarz, B. B., & Linchevski, L. (2007). The role of task design and argumentation in cognitive development during peer interaction: The case of proportional reasoning. Learning and Instruction, 17(5), 510–531. doi:10.1016/j.learninstruc.2007.09.009.

    Article  Google Scholar 

  • Schwarz, B., Schur, Y., Pensso, H., & Tayer, N. (2011). Perspective taking and synchronous argumentation for learning the day/night cycle. International Journal of Computer-Supported Collaborative Learning, 6(1), 113–138. doi:10.1007/s11412-010-9100-x.

    Article  Google Scholar 

  • Stegmann, K., Wecker, C., Weinberger, A., & Fischer, F. (2012). Collaborative argumentation and cognitive elaboration in a computer-supported collaborative learning environment. Instructional Science, 40(2), 297–323. doi:10.1007/s11251-011-9174-5.

    Article  Google Scholar 

  • Strijbos, J. W., Martens, R. L., Jochems, W. M. G., & Broers, N. J. (2004). The effect of functional roles on group efficiency: Using multilevel modeling and content analysis to investigate computer-supported collaboration in small groups. Small Group Research, 35(2), 195–229. doi:10.1177/1046496403260843.

    Article  Google Scholar 

  • Teasley, S. D. (1997). Talking about reasoning: How important is the peer in peer collaboration? In L. B. Resnick, R. Säljö, C. Pontecorvo, & B. Burge (Eds.), Discourse, tools, and reasoning: Situated cognition and technologically supported environments (pp. 361–384). Berlin: Springer.

    Chapter  Google Scholar 

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177. doi:10.1090/S0273-0979-1994-00502-6.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • van Gog, T., & Rummel, N. (2010). Example-based learning: Integrating cognitive and social-cognitive research perspectives. Educational Psychology Review, 22(2), 155–174. doi:10.1007/s10648-010-9134-7.

    Article  Google Scholar 

  • Vogel, F., Wecker, C., Kollar, I., & Fischer, F. (2016). Socio-cognitive scaffolding with computer-supported collaboration scripts: A meta-analysis. Educational Psychology Review. doi:10.1007/s10648-016-9361-7.

    Google Scholar 

  • Wecker, C., Kollar, I., & Fischer, F. (2011). Explaining the effects of continuous and faded scripts on online search skills: The role of collaborative strategy practice. In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting computer-supported collaborative learning to policy and practice: CSCL 2011 conference proceedings. Volume ILong papers (pp. 390–397). International Society of the Learning Sciences.

  • Wegerif, R. (2008). Dialogic or dialectic? The significance of ontological assumptions in research on educational dialogue. British Educational Research Journal, 34(3), 347–361. doi:10.1080/01411920701532228.

    Article  Google Scholar 

  • Weinberger, A., Stegmann, K., & Fischer, F. (2010). Learning to argue online: Scripted groups surpass individuals (unscripted groups do not). Computers in Human Behavior, 26(4), 506–515. doi:10.1016/j.chb.2009.08.0.

    Article  Google Scholar 

Download references

Acknowledgments

This research is part of the project ELK-Math, funded by the Deutsche Forschungsgemeinschaft (DFG) under grant RE 1247/9-1 and FI 792/7-1. This contribution contains work that is part of the doctoral dissertation of Freydis Vogel under the supervision of Prof. Dr. Frank Fischer and Prof. Dr. Ingo Kollar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freydis Vogel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, F., Kollar, I., Ufer, S. et al. Developing argumentation skills in mathematics through computer-supported collaborative learning: the role of transactivity. Instr Sci 44, 477–500 (2016). https://doi.org/10.1007/s11251-016-9380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11251-016-9380-2

Keywords

Navigation