Advertisement

Genetic diversity and matrilineal genetic origin of fat-rumped sheep in Ethiopia

  • Helen NigussieEmail author
  • Joram M. Mwacharo
  • Sarah Osama
  • Morris Agaba
  • Yoseph Mekasha
  • Kefelegn Kebede
  • Solomon Abegaz
  • Sanjoy Kumar Pal
Regular Articles
  • 72 Downloads

Abstract

Ethiopia is home to a diverse gene pool of indigenous sheep populations. Therefore, a better understanding of genetic variation holds the key to future utilization through conservation. Three of these breeds, Afar, Blackhead Somali, and Hararghe Highland, are found in eastern Ethiopia where they contribute significantly to the livelihood of most pastoralist, agro-pastoralist, and smallholder farmers. These indigenous sheep are recognized on the basis of morphotype and their genetic distinction remains unknown. Here, to assess genetic variation, and matrilineal genetic origin and relationship of fat-rumed sheep found in eastern Ethiopia, 300 individuals from the three breeds were genotyped for 22 microsatellite markers and sequenced for the mitochondrial DNA displacement loop (mtDNA d-loop) region. The overall HO and HE were 0.57 and 0.75, respectively. Differentiation statistics revealed that a high proportion (97%) of the total genetic variation was explained by differences between individuals within populations. Genotype assignment independent of the population of origin showed K = 2 to be the optimum number of genetic backgrounds present in the dataset. This result was further confirmed by mtDNA D-loop sequences comparison in which the matrilineal genetic origin of eastern Ethiopia sheep is from two haplotype groups (types A and B) among the five haplotypes globally observed. Taken together, our findings suggest that the sheep populations from three breeds originated from two ancestral genetic backgrounds that may have diverged prior to their introduction to Ethiopia. However, to obtain a complete picture of the evolutionary dynamics of Ethiopian indigenous sheep, more samples and populations from within and outside of the country will need to be analyzed.

Keywords

Microsatellites mtDNA D-loop sequence Ovis aries 

Notes

Acknowledgments

We would like to thank Haramaya University and the Swedish International Development Cooperation Agency (Sida) cooperation for funding blood sample collection and BecA-ILRI Hub through the African Biosciences Challenge Fund (ABCF) Program for laboratory work. The ABCF Program is funded by the Australian Department for Foreign Affairs and Trade (DFAT) through the BecA-CSIRO partnership, the Syngenta Foundation for Sustainable Agriculture (SFSA), the Bill & Melinda Gates Foundation (BMGF), the UK Department for International Development (DFID), and the Swedish International Development Cooperation Agency (Sida).

Compliance with ethical standards

Ethical approval

Permission was obtained from the department head of the Animal and Range Sciences to carry out the present work. Standard protocol for animal care and welfare was employed during sample collection.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Supplementary material

11250_2019_1827_MOESM1_ESM.docx (873 kb)
ESM 1 (DOCX 872 kb)

References

  1. Abdelkader A.A., Ata N., Benyoucef M.T., Djaout A., Azzi N., Yilmaz O., Cemal İ, Gaouar S.B., 2018. New genetic identification and characterisation of 12 Algerian sheep breeds by microsatellite markers, Italian Journal of Animal Science, 17(1), 38–48CrossRefGoogle Scholar
  2. Agaviezor, B.O., Peters, S.O., Adefenwa, M.A., Yakubu, A., Adebambo, O.A., Ozoje, M.O., Ikeobi, C.O.N., Wheto, M., Ajayi, O.O., Amusan, S.A., Ekundayo, O.J., Sanni, T.M., Okpeku, M., Onasanya, G.O., De Donato, M., Ilori, B.M., Kizilkaya, K., Imumorin, I.G., 2012. Morphological and microsatellite DNA diversity of Nigerian indigenous sheep, Journal of Animal Science & Biotechnology, 3, 38CrossRefGoogle Scholar
  3. Ann Horsburgh, K., Rhines, A., 2010. Genetic characterization of an archaeological sheep assemblage from South Africa’s Western Cape, Journal of Archaeological Science, 37, 2906–2910CrossRefGoogle Scholar
  4. Bandelt HJ, Forster P, Röhl A, 1999. Median-joining networks for inferring intraspecific phylogenies, Molecular biology and evolution, 1, 6(1), 37–48CrossRefGoogle Scholar
  5. Bataillon T.M., David J.L., Schoen D. J, 1996. Neutral genetic markers and conservation genetics: simulated germplasm collections, Genetics, 144(1), 409–17PubMedPubMedCentralGoogle Scholar
  6. Ben Sassi-Zaidy, Y., Maretto, F., Charfi-Cheikrouha, F., Cassandro, M., 2014. Genetic diversity, structure, and breed relationships in Tunisian sheep, Small Ruminant Research, 119, 52–56CrossRefGoogle Scholar
  7. Boettcher, P.J., Hoffmann, I., Baumung, R., Drucker, A.G., McManus, C., Berg, P., Stella, A., Nilsen, L., Moran, D., Naves, M., Thompson, M., 2014. Genetic resources and genomics for adaptation of livestock to climate change, Frontiers in genetics, 5, 2014–2016Google Scholar
  8. Clark, J. D., and Williams M., 1978. Recent archaeological research in southeastern Ethiopia (1974-1975): some preliminary results, Annales d'Ethiopie, 11, 19–44CrossRefGoogle Scholar
  9. CSA (Central Statistic Authority), 2017. Agricultural sample survey Volume II, (Central Statistic Authority, Addis Ababa)Google Scholar
  10. Crispim B.D., Seno L.D., Egito A.A., Vargas Junior F.M., Grisolia A.B, 2014. Application of microsatellite markers for breeding and genetic conservation of herds of Pantaneiro sheep, Electronic Journal of Biotechnology, 17(6), 317–21CrossRefGoogle Scholar
  11. Dadi, H., Tibbo, M., Takahashi, Y., Nomura, K., Hanada, H., Amano, T., 2008. Microsatellite analysis reveals high genetic diversity but low genetic structure in Ethiopian indigenous cattle populations, Animal Genetics, 39, 425–431CrossRefPubMedGoogle Scholar
  12. Dashab G.R., Aslaminejad A., Nasirri M.R., Esmailizadeh A., Saghi D.A, 2011. Analysis of genetic diversity and structure of Baluchi Sheep by microsatellite markers. Tropical and Subtropical Agro ecosystems, 14(3)Google Scholar
  13. Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin ver 3.5.1.2: an integrated software package for population genetics data analysis, Evolutionary Bioinformatics, 1, 47–50CrossRefGoogle Scholar
  14. Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study, Molecular Ecology, 14, 2611–2620CrossRefPubMedGoogle Scholar
  15. FAO, 2000. The State of Food and Agriculture 2000 - Lessons from the past 50 years (FAO, Roam)Google Scholar
  16. Gaouar, S.B.S., Kdidi, S., Ouragh, L., 2016. Estimating population structure and genetic diversity of five Moroccan sheep breeds by microsatellite markers, Small Ruminant Research, 144, 23–27CrossRefGoogle Scholar
  17. Gifford-Gonzalez, D., Hanotte, O., 2011. Domesticating Animals in Africa: Implications of Genetic and Archaeological Findings, Journal of World Prehistory, 24, 1–23CrossRefGoogle Scholar
  18. Gizaw, S., Van Arendonk, J.A.M., Komen, H., Windig, J.J., Hanotte, O., 2007. Population structure, genetic variation and morphological diversity in indigenous sheep of Ethiopia, Animal Genetics, 38, 621–628CrossRefPubMedGoogle Scholar
  19. Gizaw, S., Komen, H., Windig, J. J., Hanotte, O., & Van Arendonk, J. A., 2008. Conservation priorities for Ethiopian sheep breeds combining threat status, breed merits and contributions to genetic diversity, Genetics Selection Evolution, 40, 433–448Google Scholar
  20. Gornas, N., Weimann, C., El Hussien, A., Erhardt, G., 2011. Genetic characterization of local Sudanese sheep breeds using DNA markers, Small Ruminant Research, 95, 27–33CrossRefGoogle Scholar
  21. Goudet J., 2001. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html (accessed 09 Sep 2018)
  22. Hassen, H., Lababidi, S., Rischkowsky, B., Baum, M., Tibbo, M., 2012. Molecular characterization of Ethiopian indigenous goat populations. Tropical Animal Health and Production, 44, 1239–1246CrossRefPubMedGoogle Scholar
  23. Hiendleder, S., Lewalski, H., Wassmuth, R., Janke A.,1998. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype, Journal of Molecular Evolution, 47, 441–448CrossRefPubMedGoogle Scholar
  24. Jawasreh K.I., Ababneh M.M., Ismail Z.B., Younes A.M., Al Sukhni I., 2018. Genetic diversity and population structure of local and exotic sheep breeds in Jordan using microsatellites markers, Veterinary world, 11(6):778–781CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lancioni H., Di Lorenzo P., Ceccobelli S., Perego U.A., Miglio A., Landi V., Antognoni M.T., Sarti F.M., Lasagna E., Achilli A., 2013. Phylogenetic relationships of three Italian merino-derived sheep breeds evaluated through a complete mitogenome analysis. PloS one,8(9), e73712.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Librado, P., Rozas, J., 2009. DnaSPv5: a software for comprehensive analysis of DNA polymorphism data Bioinformatics, 25, 1451–1452CrossRefPubMedGoogle Scholar
  27. Meadows, J.R.S., Li, K., Kantanen, J., Tapio, M., Sipos, W., Pardeshi, V., Gupta, V., Calvo, J.H., Whan, V., Norris, B. and Kijas, J.W., 2005. Mitochondrial sequence reveals high levels of gene flow between breeds of domestic sheep from Asia and Europe, Journal of Heredity, 96, 494–501CrossRefPubMedGoogle Scholar
  28. Muigai, A.W.T., Hanotte, O., 2013. The Origin of African Sheep: Archaeological and Genetic Perspectives, African Archaeological Review, 39–50Google Scholar
  29. Muigai, A.W.T., Okeyo, A.M., Kwallah, A.K., Mburu, D., Hanotte, O., 2009. Characterization of sheep populations of Kenya using microsatellite markers: Implications for conservation and management of indigenous sheep populations, South African Journal of Animal Science, 39, 93–96Google Scholar
  30. Nigussie, H., Kumar Pal, S., Diriba, S., Mekasha, Y., Kebede, K., Abegaz, S., 2016. Phenotypic variation and protein polymorphism of indigenous sheep breeds in eastern Ethiopia, Livestock Research Rural Development, 28, 139Google Scholar
  31. Nigussie, H., Mekasha, Y., Abegaz, S., Kebede, K., Kumar Pal, S., 2015. Indigenous Sheep Production System in Eastern Ethiopia: Implications for Genetic Improvement and Sustainable Use, American Scientific Research Journal for Engineering, Technology, and Sciences,11, 2313–4410Google Scholar
  32. Nigussie, H., Mekasha, Y., Kebede, K., Abegaz, S., Pal, S.K., 2013. Production objectives, breeding practices and selection criteria of indigenous sheep in eastern Ethiopia, Livestock Research Rural Development, 25, 157Google Scholar
  33. Nei, M. ,1987. Molecular Evolutionary Genetics, (Columbia University Press, New York)Google Scholar
  34. Oner, Y., Calvo, J.H., Elmaci, C., 2013. Investigation of the genetic diversity among native Turkish sheep breeds using mtDNA polymorphisms, Tropical Animal Health Production, 45, 947–951CrossRefPubMedGoogle Scholar
  35. Pritchard, J.K., Wen, X., Falush, D., 2010. Documentation for structure software: Version 2 . 3, (University of Chicago, Chicago)Google Scholar
  36. Resende, A., Gonçalves, J., Muigai, A.W.T., Pereira, F., 2016. Mitochondrial DNA variation of domestic sheep (Ovis aries) in Kenya, Animal Genetics, 47, 377–381CrossRefPubMedGoogle Scholar
  37. Rice, W.R., 1989. Analyzing tables of statistical test, Evolution 43, 223–225CrossRefPubMedGoogle Scholar
  38. Rosenberg N.A., 2004. DISTRUCT: a program for the graphical display of population structure, Molecular Ecology Resources. 4, 137–138Google Scholar
  39. Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance, Genetics, 145, 1219–1228PubMedPubMedCentralGoogle Scholar
  40. Rousset, F., 2017. Genepop version 4.6.9. https://www.semanticscholar.org/paper/Genepop-version-4.6.9/88ae28e934a876a0fd981468cfe8d0517b40714b. (Accessed 01 July 2018)
  41. Saitou, N., Nei, M., 1987. The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4, 406–425PubMedGoogle Scholar
  42. Sharma R., Kumar B., Arora R., Ahlawat S., Mishra A.K., Tantia M.S., 2016. Genetic diversity estimates point to immediate efforts for conserving the endangered Tibetan sheep of India, Meta gene,30(8),14–20CrossRefGoogle Scholar
  43. Shibabaw W., Mekasha, Y., and Kebede, K., 2014. On-farm Phenotypic Characterization of Sheep Type in the Highlands of Eastern Hararghe zone, Etiopian Journal of Animal Production, 14, 24–33Google Scholar
  44. Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations, Genetics, 105, 437–460PubMedPubMedCentralGoogle Scholar
  45. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0, Molecular Biology and Evolution, 30, 2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  47. Thornton, P.K., 2010. Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2853–2867CrossRefPubMedGoogle Scholar
  48. Weir, B.S., Cockerham, C.C., 1984. Estimating F-Statistics for the Analysis of Population Structure Author (s): B . S. Weir and C. Clark Cockerham Published by: Society for the Study of Evolution Stable URL: http://www.jstor.org/stable/2408641. Evolution (N. Y). 38, 1358–1370.
  49. Yeh, F., Rong-cai, Y., Boyle, T., Freeware, M.W., Arunkumar, K.P., Sahu, A.K., Mohanty, A.R., Awasthi, A.K., Pradeep, A.R., Urs, S.R., Nagaraju, J., Rousset, F., Narain, R.B., Lalithambika, S., Kamble, S.T., Qin, Y.-J., Buahom, N., Krosch, M.N., Du, Y., Wu, Y., Malacrida, A.R., Deng, Y.-L., Liu, J.-Q., Jiang, X.-L., Li, Z.-H., Volume, T., Concentration, S., Reaction, Q.P., Wardlow, B.D., Egbert, S.L., Kastens, J.H., Khamis, F., Karam, N., Guglielmino, C.R., Ekesi, S., Masiga, D., De Meyer, M., Kenya, E.U., Malacrida, A.R., Hoshino, A.A., Pereira Bravo, J., Nobile, P.M., Morelli, K.A., Islam, M.-S., Glynn, J.M., Bai, Y., Duan, Y.-P., Coletta-Filho, H.D., Kuruba, G., Civerolo, E.L., Lin, H., Sajib, A.M., Hossain, M., Ali, S., Wasala, S.K., Prasanna, B.M., Nfgel, G.R.C.P., Mulato, B.M., Möller, M., Zucchi, M.I., Quecini, V., Pinheiro, J.B., Wangari, N.P., Gacheri, K.M., Theophilus, M.M., Box, P.O., Boykin, L.M., Bagnall, R.A., Frohlich, D.R., Hall, D.G., Hunter, W.B., Katsar, C.S., McKenzie, C.L., Rosell, R.C., Shatters, R.G., 1999. Quick User Guide: POPGENE Version 1.31 Microsoft Window-based Freeware for Population Genetic Analysis, BMC Microbiology, 12, 39Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Microbial, Cellular and Molecular BiologyAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.International Center for Agricultural Research in the Dry Areas (ICARDA) c/o ILRIAddis AbabaEthiopia
  3. 3.Biosciences eastern and central Africa (BecA-ILRI)International Livestock Research InstituteNairobiKenya
  4. 4.The Nelson Mandela African Institution of Science and Technology (NM-AIST)ArushaTanzania
  5. 5.The Agricultural Transformation AgencyAddis AbabaEthiopia
  6. 6.Institute of Agricultural Sciences in the Tropics, Department of Animal Breeding and Husbandry in the tropics and Sub tropics- 490hUniversity of Hohenheim GarrbenstrStuttgartGermany
  7. 7.Ethiopian Institutes of Agricultural ResearchDebre ZeitEthiopia
  8. 8.School of Pharmaceutical & Allied Medical Sciences, School of Natural SciencesCT UniversityJagraon LudhianaIndia

Personalised recommendations