Skip to main content
Log in

Milk production and fatty acid profile of dairy cows grazing four grass species pastures during the rainy season in small-scale dairy systems in the highlands of Mexico

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The study evaluated small-scale dairy systems with continuous grazing of pastures based on three temperate grasses festulolium (FL), tall fescue (TF), and perennial ryegrass (RG), compared with subtropical kikuyu grass (KG). All pastures were associated with white clover (Trifolium repens L.). Twelve multiparous Holstein cows were assigned to a 4 × 4 Latin square replicated three times with 14-day experimental periods. Sampling and analyses of pastures, concentrates, and animal variables followed standard procedures. FL showed a significantly (p < 0.05) higher mean sward height, but there were no differences (p > 0.05) in net herbage accumulation. There were significant differences (p < 0.05) among pastures for CP, NDF, ADF, in vitro digestibility of OM (IVOMD), and estimated metabolizable energy (eME). There were no differences (p > 0.05) between treatments for milk yield and composition, live weight, or body condition score. There were significant differences (p < 0.05) in fatty acid values for pastures in C14:0, C16:1, and C18:3n3. There were significant differences between treatments (p < 0.05) in milk contents for C18:0, C18:1t11, and C18:2c9t11. Grazing FL, TF, RG, or KY pastures showed no differences in milk yields. Higher values for C18:0, C18:1t11, and C18:2c9t11 were detected in KY, RG, and TF. RG had significantly higher MUFA than FL and higher PUFA than TF. A value under 65% of SFA, a ratio of n-6/n-3 lower than 4, and an atherogenic index of 1.7 are indicators of milk with beneficial effects for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AFRC, 1993. Animal and Food Research Council. Energy and protein requirements of ruminants, CAB International, Wallingford, UK.

    Google Scholar 

  • Buccioni, A. M., Decandia, M., Minieri, S., Molle, G., and Cabiddu, A., 2012. Lipid metabolism in the rumen: New insights on lipolysis and bio hydrogenation with an emphasis on the role of endogenous plant factors. Animal Feed Science Technology, 174, 1–25.

    Article  CAS  Google Scholar 

  • Calder, P. C., 2006. Polyunsaturated fatty acids and inflammation. Prostaglandins, leukotrienes and essential. Fatty Acids, 75, 197–202.

    Article  CAS  Google Scholar 

  • Celis-Álvarez, M. D., López-González, F., Martínez-García C. G., Estrada-Flores, J. G., and Arriaga-Jordán, C. M., 2016. Oat and ryegrass silage for small-scale dairy systems in the highlands of central Mexico. Tropical Animal Health and Production, 48, 1129–1134. https://doi.org/10.1007/s11250-016-1063-0.

    Article  PubMed  Google Scholar 

  • Dairy Records Management Systems, 2014. DHI Glossary. Retrieved from http://www.drms.org PDF/materials/glossary.pdf

  • Dierking, R. M. R., Kallenbach, L., Kerley M. S., Roberts, C. A., and Lock T. R., 2008. Yield and nutritive value of ‘Spring Green’ festulolium and ‘Jesup’ endophyte-free tall fescue stockpiled for winter pasture. Crop Science, 48, 2463–2469.

    Article  Google Scholar 

  • Elgersma, A. (2015). Grazing increase the unsaturated fatty acid concentration of milk grassfed cows: A review of the contributing factors, challenges and future perspectives. European Journal of Lipid Science and Technology, 117, 1345–1369.

    Article  CAS  Google Scholar 

  • Fadul-Pacheco, L., Wattiaux, M.A., Espinoza-Ortega, A., Sánchez-Vera, E., and Arriaga-Jordán, C. M., 2013. Evaluation of sustainability of smallholder dairy production systems in the highlands of Mexico during the rainy season. Agroecology and Sustainable Food Systems, 37, 882–901.

    Article  Google Scholar 

  • Field, A., 2013. Discovering statistics using IBM SPSS Statistics (4th edn.). Los Angeles: Sage.

    Google Scholar 

  • Griinari, J.M., and Bauman, D.E., 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz, M.P., Mossoba, M.M., Kramer, K.G., Pariza, M.W., Nelson, G.J. Editors. Advances in Conjugated Linoleic Acid Research. USA: AOCS, 180–200.

    Google Scholar 

  • Glasenapp de Menezes, L.F., Kozloski, G.V., Restle, J., Brondani, I.L., Pazidora, R.D., and Cattelam, J., 2010. Profile of ingested fatty acids and in the duodenal digest of steers fed different diets. Revista Brasileira de Zootecnia, 39, 2502–2511.

    Article  Google Scholar 

  • Hernández-Mendo, O., and Leaver, J. D., 2006. Production and behavioural responses of high- and low-yielding dairy cows to different periods of access to grazing or to a maize silage and soyabean meal diet fed indoors. Grass and Forage Science, 61, 335–346.

    Article  Google Scholar 

  • Hoogendoorn, C. J., Newton, P. C. D., Devantier, B. P., Rolle, B. A., Theobald, P. W., and Lloyd-West C. M., 2016. Grazing intensity and micro-topographical effects on some nitrogen and carbon pools and fluxes in sheep-grazed hill country in New Zealand. Agriculture Ecosystems and Environment, 217, 22–32.

    Article  CAS  Google Scholar 

  • Kay, J. K., Mackle, T.R., Auldist, M.J., Thomson, N.A., Bauman, D.E., 2004. Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. Journal of Dairy Science, 87, 369–378.

    Article  CAS  Google Scholar 

  • Lee, J.M., Clark, A.J., and Roche, J.R., 2013. Climate change effects and adaptation options for temperate pasture-based dairy farming systems: a review. Grass and Forage Science, 68, 485–503. https://doi.org/10.1111/gfs.12039.

    Article  Google Scholar 

  • Mayne, C.S., Wright, I., and Fisher G.E.J., 2000. Grassland management under grazing and animal response. In: Hopkins A. et al. (ed) Grass: its production and utilization. Chapter 10, pp. 247-291. Oxford, UK : Blackwell Science.

    Google Scholar 

  • Mc Dermott, J.J., Stall, S. J., Freeman, H.A., and Van de Steeg, J.A., 2010. Sustaining intensification of smallholder livestock systems in the tropics. Livestock Science, 130, 95–109.

    Article  Google Scholar 

  • Morales-Almaráz, E., Soldado, A., González, A., Martínez-Fernández, A., Domínguez-Vara I. A., De la Rosa-Delgado, B., and Vicente, F., 2010. Improving the fatty acid profile of dairy cow milk by combining grazing with feeding of total mixed ration. Journal of Dairy Research, 77, 225–230.

    Article  Google Scholar 

  • Morales-Almaráz, E., De la Roza-Delgado, B., González, A., Soldado, A., Rodríguez, M.L., Peláez, M., Vicente, F., 2011. Effect of feeding system on unsaturated fatty acid levels in milk of dairy cows. Renewable Agriculture and Food Systems, 26, 224–229.

    Article  Google Scholar 

  • Nantapo, C. T. W., Muchenje, V., and Hugo, A., 2014. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian x Jersey cross cow milk under a pasture-based dairy system. Food Chemistry, 146, 127–133.

    Article  CAS  Google Scholar 

  • Palmquist, D. L., and Jenkins, T. C., 2003. Challenges with fast and fatty acid methods. Journal of Animal Science, 81, 3250–3254.

    Article  CAS  Google Scholar 

  • Parsons, A. J., and Chapman, G. F., 2000. The principles of pasture growth and utilization. In: A. Hopkins (ed), Grass: its production and utilization (3rd edn), pp. 31–89. Oxford, UK: British Grassland Society and Blackwell Science.

    Google Scholar 

  • Pérez-Ramírez, E., Peyraud, J.L., and Delagarde, R., 2012. N-Alkanes v. ytterbium/faecal index as two methods for estimating herbage intake of dairy cows fed on diets differing in the herbage: maize silage ratio and feeding level. Animal, 6, 232–244.

    Article  Google Scholar 

  • Pincay-Figueroa, P. E., López-González, F., Velarde-Guillén, J., Heredia-Nava, D., Martínez-Castañeda, F. E., Vicente, F., Martínez-Fernández, A., and Arriaga-Jordán, C. M., 2016. Cut and carry vs. grazing of cultivated pastures in small-scale dairy systems in the central highlands of Mexico. Journal of Agriculture and Environment for International Development, 110, 349-363. https://doi.org/10.12895/jaeid.20162.496.

    Article  Google Scholar 

  • Powell, M., Wattiaux, A., and Broderick, G. A., 2011. Short communication: evaluation of milk urea nitrogen as a management tool to reduce ammonia emissions from dairy farms. Journal of Dairy Science, 94, 4690–4695.

    Article  CAS  Google Scholar 

  • Prospero-Bernal, F., Martínez-García, C. G., Olea-Pérez, R., López-González, F., and Arriaga-Jordán, C. M., 2017. Intensive grazing and maize silage to enhance the sustainability of small-scale dairy systems in the highlands of Mexico. Tropical Animal Health and Production, 49, 1537–1544.

    Article  Google Scholar 

  • Rivero, M. J., and Anrique, R., 2015. Milk fat depression syndrome and the particular case of grazing cows: a review. Acta Agriculturae Scandinavica. Section A-Animal Science, 65, 42–54.

    Article  Google Scholar 

  • Riveros, E., and Argamentaría, A., 1987. Métodos enzimáticos de predicción de la digestibilidad in vivo de la materia orgánica de forrajes. Avances en Producción Animal, 12, 59–75.

    Google Scholar 

  • Rugoho, I., Cheng, L., Aizimu, W., Bryant, R. H., and Edwards, G. R., 2016. Effects of post-grazing herbage height and concentrate feeding on milk production and major milk fatty acids of dairy cows in mid-lactation. Grass and Forage Science, 72, 211–219.

    Article  Google Scholar 

  • Samarakoon, S., Wilson, J., and Shelton, H., 1990. Growth, morphology and nutritive quality of shaded Stenotaphrum secundatum, Axonopus compressus and Penissetum clandestinum. The Journal of Agricultural Science, 114, 161–169.

    Article  Google Scholar 

  • Simopoulos, A. P. 2002. The importance of the ratio of omega-6/omega-3essential fatty acids. Biomedicine and Pharmacotherapy, 56, 365–379.

    Article  CAS  Google Scholar 

  • Thornton, P.K., van de Steeg, J., Notenbaert, A., and Herrero, M., 2009. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agricultural Systems, 101, 113–127.

    Article  Google Scholar 

  • Ulbricht, T. L. V., and Southgate, D. A. T., 1991. Coronary heart disease: seven dietary factors. The Lancet, 338, 985–992.

    Article  CAS  Google Scholar 

  • Vibart, E. R., Fellner, V., Burns, C. J., Huntington, G. B., and Green, J. T., 2008. Performance of lactating dairy cows fed varying levels of total mixed ration and pasture. Journal of Dairy Research, 75, 471–480.

    Article  CAS  Google Scholar 

  • Vicente, F., Santiago, C., Jiménez-Calderón J.D., and Martínez-Fernández, A., 2017. Capacity of milk composition to identify the feeding system used to feed dairy cows. Journal of Dairy Research, 84, 254–263.

    Article  CAS  Google Scholar 

  • Vieyra-Alberto, R., Arriaga-Jordán, C. M., Domínguez-Vara, I.A., Borquéz-Gastelum, J. L., and Morales-Almaráz, E., 2017. Effect of soybean oil on the concentration of vaccenic and rumenic fatty acids in grazing cow milk. Agrociencia, 51, 299–313.

    Google Scholar 

  • Vieyra-Alberto, R., Domínguez-Vara, I.A., Castro-Hernández, H., Arriaga-Jordán, C.M., and Morales-Almaráz, E., 2018. Pasture access times and milk fatty acid profile of dairy cows from central highland of Mexico. Journal of Livestock Science, 9, 1–8 (ISSN online 2277–6214).

    Google Scholar 

Download references

Acknowledgments

The authors express gratitude to the farmers who participated in this experiment, whose privacy is respected by not disclosing their names.

Funding

This work was undertaken thanks to funding by the Mexican National Council for Science and Technology (Consejo Nacional de Ciencia y Tecnología–CONACYT) through grant 129449 CB-2009 and the postgraduate grant for Dalia Andrea Plata-Reyes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Arriaga-Jordán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on ethical standards and animal rights

The paper reports an on-farm experiment undertaken with two participating farmers who had knowledge of the objectives of the work and were duly informed at all times, and their privacy and that of their family respected by not disclosing their names. Experimental procedures with dairy cows followed accepted procedures by Universidad Autónoma del Estado de México.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plata-Reyes, D.A., Morales-Almaraz, E., Martínez-García, C.G. et al. Milk production and fatty acid profile of dairy cows grazing four grass species pastures during the rainy season in small-scale dairy systems in the highlands of Mexico. Trop Anim Health Prod 50, 1797–1805 (2018). https://doi.org/10.1007/s11250-018-1621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-018-1621-8

Keywords

Navigation