Skip to main content
Log in

Quantitative Measurement of Squeeze Flow Distribution in Nanogaps by Particle Image Velocimetry Using Quantum Dots

  • Methodology
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The development of microfabrication and surface machining techniques has made solid surfaces more precise, and the gap dimensions in mechanical systems such as Micro Electro Mechanical Systems and Micro Total Analysis Systems have decreased from the order of micrometers to the order of nanometers. Because the fluid flow properties in nanogaps are different from those in the bulk, experimental measurement of flow velocity in nanogaps is necessary to design nanogap mechanical systems and verify the principle of their operation. In general, the lateral flow velocity distribution can be measured by mixing fluorescent particles with the fluid and tracking the particles with a microscope with high lateral and temporal resolution. However, in previous studies, quantitative measurement of flow velocity in nanogaps could not be achieved due to the influence of the interaction between the fluorescent particles and solid surfaces because the diameters of the particles were large, and ranged from tens of nm to tens of µm. The objective of this study is to quantitatively measure the lateral flow velocity distribution in nanogaps by particle image velocimetry using quantum dots with diameters in the single-digit nanometer range. We have implemented a simultaneous quantitative measurement of the nanogap shape by optical interferometry, and the flow velocity distribution by PIV using quantum dots. Focusing on the squeeze flow caused by narrowing the gap, we have shown that PIV using quantum dots can achieve quantitative measurement of velocity distribution in 100 nm-level-gaps.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used in this research is available upon request.

References

  1. Berman, D., Krim, J.: Surface science, MEMS and NEMS: progress and opportunities for surface science research performed on, or by, microdevices. Prog. Surf. Sci. 88, 171–211 (2013). https://doi.org/10.1016/j.progsurf.2013.03.001

    Article  CAS  Google Scholar 

  2. Barcelo, S., Li, Z.: Nanoimprint lithography for nanodevice fabrication. Nano Converg. 3, 21 (2016). https://doi.org/10.1186/s40580-016-0081-y

    Article  CAS  Google Scholar 

  3. Fischer, A.C., Forsberg, F., Lapisa, M., Bleiker, S.J., Stemme, G., Roxhed, N., Niklaus, F.: Integrating MEMS and ICs. Microsyst. Nanoeng. 1, 15005 (2015). https://doi.org/10.1038/micronano.2015.5

    Article  CAS  Google Scholar 

  4. Midolo, L., Schliesser, A., Fiore, A.: Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018). https://doi.org/10.1038/s41565-017-0039-1

    Article  CAS  Google Scholar 

  5. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuator A. 214, 187–218 (2014). https://doi.org/10.1016/j.sna.2014.04.025

    Article  CAS  Google Scholar 

  6. Chen, X., Zhang, L.: Review in manufacturing methods of nanochannels of bio-nanofluidic chips. Sens. Actuators B. 254, 648–659 (2018). https://doi.org/10.1016/j.snb.2017.07.139

    Article  CAS  Google Scholar 

  7. Tang, T., Yuan, Y., Yalikun, Y., Hosokawa, Y., Li, M., Tanaka, Y.: Glass based micro total analysis systems: materials, fabrication methods, and applications. Sens. Actuators B. 339, 129859 (2021). https://doi.org/10.1016/j.snb.2021.129859

    Article  CAS  Google Scholar 

  8. Tsukahara, T., Mawatari, K., Kitamori, T.: Integrated extended-nano chemical systems on a chip. Chem. Soc. Rev. 39, 1000–1013 (2010). https://doi.org/10.1039/B822557P

    Article  CAS  Google Scholar 

  9. Mawatari, K., Tsukahara, T., Sugii, Y., Kitamori, T.: Extended-nano fluidic systems for analytical and chemical technologies. Nanoscale. 2, 1588–1595 (2010). https://doi.org/10.1039/C0NR00185F

    Article  CAS  Google Scholar 

  10. Patabadige, D.E.W., Jia, S., Sibbitts, J., Sadeghi, J., Sellens, K., Culbertson, C.T.: Micro total analysis systems: fundamental advances and applications. Anal. Chem. 88, 320–338 (2016). https://doi.org/10.1021/acs.analchem.5b04310

    Article  CAS  Google Scholar 

  11. Itoh, S., Ohta, Y., Fukuzawa, K., Zhang, H.: Enhanced viscoelasticity of polyalphaolefins confined and sheared in submicron-to-nanometer-sized gap range and its dependence on shear rate and temperature. Tribol. Int. 120, 210–217 (2018). https://doi.org/10.1016/j.triboint.2017.12.022

    Article  CAS  Google Scholar 

  12. Han, S.L., Guo, F., Shao, J., Bai, Q.H., Han, L.L.: On the velocity profile of couette flow of lubricant within a micro/submicro gap. Tribol. Lett. 67, 114 (2019). https://doi.org/10.1007/s11249-019-1224-1

    Article  Google Scholar 

  13. Itoh, S., Takahashi, K., Fukuzawa, K., Zhang, H.: Measurement of viscoelasticity of UV photoresist used for nanoimprint lithography under confinement in nanometer-sized gaps. Jpn. J. Appl. Phys. 56, 06GL02 (2017). https://doi.org/10.7567/JJAP.56.06GL02

    Article  Google Scholar 

  14. Chen, K., Li, Q., Omori, T., Yamaguchi, Y., Ikuta, T., Takahashi, K.: Slip length measurement in rectangular graphene nanochannels with a 3D flow analysis. Carbon. 189, 162–172 (2022). https://doi.org/10.1016/j.carbon.2021.12.048

    Article  CAS  Google Scholar 

  15. Cuenca, A., Bodiguel, H.: Submicron flow of polymer solutions: slippage reduction due to confinement. Phys. Rev. Lett. 110, 108304 (2013). https://doi.org/10.1103/PhysRevLett.110.108304

    Article  CAS  Google Scholar 

  16. Cross, B., Barraud, C., Picard, C., Léger, L., Restagno, F., Charlaix, É.: Wall slip of complex fluids: interfacial friction versus slip length. Phys. Rev. Fluids. 3, 062001 (2018). https://doi.org/10.1103/PhysRevFluids.3.062001

    Article  Google Scholar 

  17. Ponjavic, A., Dench, J., Morgan, N., Wong, J.S.S.: In situ viscosity measurement of confined liquids. RSC Adv. 5, 99585–99593 (2015). https://doi.org/10.1039/C5RA19245E

    Article  CAS  Google Scholar 

  18. Strubel, V., Simoens, S., Vergne, P., et al.: Fluorescence tracking and µ-PIV of individual particles and lubricant flow in and around lubricated point contacts. Tribol. Lett. 65, 75 (2017). https://doi.org/10.1007/s11249-017-0859-z

    Article  Google Scholar 

  19. Kazoe, Y., Iseki, K., Mawatari, K., Kitamori, T.: Evanescent wave-based particle tracking velocimetry for nanochannel flows. Anal. Chem. 85, 10780–10786 (2013). https://doi.org/10.1021/ac401964h

    Article  CAS  Google Scholar 

  20. Jeffreys, S., di Mare, L., Liu, X., Morgan, N., Wong, J.S.S.: Elastohydrodynamic lubricant flow with nanoparticle tracking. RSC Adv. 9, 1441–1450 (2019). https://doi.org/10.1039/C8RA09396B

    Article  CAS  Google Scholar 

  21. Matsuura, Y., Nakamura, A., Kato, H.: Nanoparticle tracking velocimetry by observing light scattering from individual particles. Sens. Actuators B. 256, 1078–1085 (2018). https://doi.org/10.1016/j.snb.2017.10.054

    Article  CAS  Google Scholar 

  22. Copeland, C.R., McGray, C.D., Geist, J., Stavis, S.M.: Particle tracking of microelectromechanical system performance and reliability. J. Microelectromech. Syst. 27, 948–950 (2018). https://doi.org/10.1109/JMEMS.2018.2874771

    Article  CAS  Google Scholar 

  23. Li, J.X., Höglund, E., Westerberg, L.G., Green, T.M., Lundström, T.S., Lugt, P.M., Baart, P.: µPIV measurement of grease velocity profiles in channels with two different types of flow restrictions. Tribol. Int. 54, 94–99 (2012). https://doi.org/10.1016/j.triboint.2012.03.007

    Article  Google Scholar 

  24. Bilan, R., Nabiev, I., Sukhanova, A.: Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChembioChem. 17, 2103–2114 (2016). https://doi.org/10.1002/cbic.201600357

    Article  CAS  Google Scholar 

  25. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005). https://doi.org/10.1038/nmat1390

    Article  CAS  Google Scholar 

  26. Wu, C.W., Zhou, P., Ma, G.J.: Squeeze fluid film of spherical hydrophobic surfaces with wall slip. Tribol. Int. 39, 863–872 (2006). https://doi.org/10.1016/j.triboint.2005.08.001

    Article  CAS  Google Scholar 

  27. Luo, J.B., Shen, M.W., Wen, S.Z.: Tribological properties of nanoliquid film under an external electric field. J. Appl. Phys. 96, 6733–6738 (2004). https://doi.org/10.1063/1.1806259

    Article  CAS  Google Scholar 

  28. Song, Y., Fukuzawa, K., Itoh, S., Zhang, H., Azuma, N.: In-situ measurement of temporal changes in thickness of polymer adsorbed films from lubricant oil by vertical-objective-based ellipsometric microscopy. Tribol. Int. 165, 107341 (2022). https://doi.org/10.1016/j.triboint.2021.107341

    Article  CAS  Google Scholar 

  29. Fukuzawa, K., Sasao, Y., Namba, K., Yamashita, C., Itoh, S., Zhang, H.: Measurement of nanometer-thick lubricating films using ellipsometric microscopy. Tribol. Int. 122, 8–14 (2018). https://doi.org/10.1016/j.triboint.2018.02.016

    Article  Google Scholar 

  30. Hu, H., Saga, T., Kobayashi, T., Okamoto, K., Taniguchi, N.: Evaluation of the cross correlation method by using PIV standard images. J. Vis. 1, 87–94 (1998). https://doi.org/10.1007/BF03182477

    Article  Google Scholar 

  31. Hart, D.P.: PIV error correction. Exp. Fluids. 29, 13–22 (2000). https://doi.org/10.1007/s003480050421

    Article  Google Scholar 

  32. Goldman, A.J., Cox, R.G., Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall—I motion through a quiescent fluid. Chem. Eng. Sci. 22, 637–651 (1967). https://doi.org/10.1016/0009-2509(67)80047-2

    Article  CAS  Google Scholar 

  33. Staben, M.E., Zinchenko, A.Z., Davis, R.H.: Motion of a particle between two parallel plane walls in low-Reynolds-number poiseuille flow. Phys. Fluids. 15, 1711–1733 (2003). https://doi.org/10.1063/1.1568341

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported in part by the NSK Foundation for the Advancement of Mechatronics (NSK-FAM), and JST ACT-X Grant Number JPMJAX21B2, Tokai Pathways to Global Excellence (T-GEx), part of MEXT Strategic Professional Development Program for Young Researchers, Japan.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by N. Azuma, H. Ozeki, and K. Miki. The first draft of the manuscript was written by N. Azuma and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Naoki Azuma or Hidetaka Ozeki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 165 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azuma, N., Ozeki, H., Miki, K. et al. Quantitative Measurement of Squeeze Flow Distribution in Nanogaps by Particle Image Velocimetry Using Quantum Dots. Tribol Lett 71, 112 (2023). https://doi.org/10.1007/s11249-023-01783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01783-8

Keywords

Navigation