Skip to main content
Log in

On the Velocity Profile of Couette Flow of Lubricant Within a Micro/Submicro Gap

  • Tribology Methods
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The hydrodynamic lubrication properties of sliding bearings are influenced by the velocity profile under shear. However, at present, there are very few reports on the velocity profile distribution of the fluid film lubrication in conformal contacts. In this article, an apparatus was built for in situ measurement of the velocity profile of thin oil film under a micro/submicro gap at ambient pressure using a photobleached imaging technique and imaging the shape evolution of the bleached area under shear. The film thickness is calibrated by interferometry. The results show that the velocity profile of oligomer PB450 doped with a fluorescent agent is a typical linear distribution under higher film thickness, which is in accordance with the classical lubrication theory. When the gap of the disk and slider is less than 2 μm, there are obvious partial inhomogeneous shear flows at ambient pressure, and the slip length increases with the decreasing film thickness. Lubricants of different viscosities and molecular structures show an inhomogeneous flow transition at different confinements. Correspondingly, abnormal velocity profile results combined with generalized Reynolds equation could explain the phenomenon that the convergence ratio of the maximum load-carrying capacity is larger than 1.2 experiencing hydrodynamic lubrication. Hence, this work contributes to an improved understanding of rheology as well as more accurate predictions of tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hamrock, B. J.: Fundamentals of Fluid -freq Lubrication, McGraw-Hill, New York (1994)

  2. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  CAS  Google Scholar 

  3. Barrat, J.L., Lydéric, B.: Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82(23), 4671–4674 (1999)

    Article  CAS  Google Scholar 

  4. Bonaccurso, E., Kappl, M., Butt, H.J.: Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects. Phys. Rev. Lett. 88(7), 076103 (2002)

    Article  Google Scholar 

  5. Spikes, H.A.: The half-wetted bearing. Part 1: extended Reynolds equation. Proc. Inst. Mech. Eng. J 217(1), 1–14 (2003)

    Article  Google Scholar 

  6. Guo, F., Wong, P.L.: Theoretical prediction of hydrodynamic effect by tailored boundary slippage. Proc. Inst. Mech. Eng. J 220(1), 43–48 (2006)

    Article  Google Scholar 

  7. Meng, X.K., Khonsari, M.M.: On the effect of viscosity wedge in micro-textured parallel surfaces. Tribol. Int. 107, 116–124 (2017)

    Article  CAS  Google Scholar 

  8. Guo, F., Wong, P.L.: Experimental observation of a dimple-wedge elastohydrodynamic lubricating film. Tribol. Int. 37(2), 119–127 (2004)

    Article  CAS  Google Scholar 

  9. Lumma, D., Best, A., Gansen, A., et al.: Flow profile near a wall measured by double-focus fluorescence cross-correlation. Phys. Rev. E 67(5), 056313 (2003)

    Article  CAS  Google Scholar 

  10. Li, J.X., Höglund, E., Westerberg, L.G., et al.: µPIV measurement of grease velocity profiles in channels with two different types of flow restrictions. Tribol. Int. 54, 94–99 (2012)

    Article  Google Scholar 

  11. Kuang, C., Wang, G.: A novel far-field nanoscopic velocimetry for nanofluidics. Lab Chip 10(2), 240 (2010)

    Article  CAS  Google Scholar 

  12. Pit, R.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85(5), 980 (2000)

    Article  CAS  Google Scholar 

  13. Cuenca, A., Bodiguel, H.: Fluorescence photobleaching to evaluate flow velocity and hydrodynamic dispersion in nanoslits. Lab Chip 12(9), 1672–1679 (2012)

    Article  CAS  Google Scholar 

  14. Ponjavic, A., Chennaoui, M., Wong, J.S.S.: Through-thickness velocity profile measurements in an elastohydrodynamic contact. Tribol. Lett. 50(2), 261–277 (2013)

    Article  Google Scholar 

  15. Ponjavic, A., di Mare, L., Wong, J.S.S.: Effect of pressure on the flow behavior of polybutene. J. Polym Sci. B 52(10), 708–715 (2014)

    Article  CAS  Google Scholar 

  16. Han, S., Li, C., Guo, F., et al.: Velocity profile measurement of oil films in a confined gap based on FRAP. Opt. Preci. Eng. 25(1), 141–147 (2017)

    Article  Google Scholar 

  17. Bai, Q.H., Guo, F., Wong, P.L., et al.: Online measurement of lubricating film thickness in slider-on-disc contact based on dichromatic optical interferometry. Tribol. Lett. 65(4), 145 (2017)

    Article  Google Scholar 

  18. Guo, F., Yang, S.Y., Ma, C., et al.: Experimental study on lubrication film thickness under different interface wettabilities. Tribol. Lett. 54(1), 81–88 (2014)

    Article  CAS  Google Scholar 

  19. Guo, F., Wong, P.L., Fu, Z., et al.: Interferometry measurement of lubricating films in slider-on-disc contacts. Tribol. Lett. 39(1), 71–79 (2010)

    Article  Google Scholar 

  20. Brunet, F., Cid, E., Bartoli, A.: Simultaneous image registration and monocular volumetric reconstruction of a fluid flow. In: Proceedings of the British Machine Vision Conference, pp. 83.1–83.11. (2011)

  21. Meurisse, M.H., Morales Espejel, G.: Reynolds equation, apparent slip, and viscous friction in a three-layered fluid film. Proc. Inst. Mech. Eng. J 222(3), 369–380 (2008)

    Article  CAS  Google Scholar 

  22. Cuenca, A., Bodiguel, H.: Submicron flow of polymer solutions: slippage reduction due to confinement. Phys. Rev. Lett. 110(10), 108304 (2013)

    Article  Google Scholar 

  23. Drummond, C., Israelachvili, J.: Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33(13), 4910–4920 (2000)

    Article  CAS  Google Scholar 

  24. Silliman, W.J., Secriven, L.: Separating how near a static contact line: slip at a wall and shape of a free surface. J. Comput. Phys. 34(3), 287–313 (1980)

    Article  CAS  Google Scholar 

  25. Neto, C., Evans, D.R., Bonaccurso, E., et al.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859 (2005)

    Article  CAS  Google Scholar 

  26. H´enot, M., Grzelka, M., Zhang, J., et al.: Temperature-controlled slip of polymer melts on ideal substrates. Phys. Rev. Lett. 121, 177802 (2018)

    Article  Google Scholar 

  27. Ponjavic, A., Wong, J.S.: The effect of boundary slip on elastohydrodynamic lubrication. RSC Adv. 4(40), 20821–20829 (2014)

    Article  CAS  Google Scholar 

  28. Yang, P., Wen, S.: A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication. J. TRIBOL-T ASME 112(4), 631–636 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the National Natural Science Foundation of China (Nos. 51605239, 51775286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S.L., Guo, F., Shao, J. et al. On the Velocity Profile of Couette Flow of Lubricant Within a Micro/Submicro Gap. Tribol Lett 67, 114 (2019). https://doi.org/10.1007/s11249-019-1224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1224-1

Keywords

Navigation