Skip to main content
Log in

Tribological Behavior of Novel Core–Shell Fe3O4@PEG Nano-Additives

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this study, the Fe3O4@PEG nanocomposites with core–shell structure were fabricated by a co-precipitation method and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometer and thermal gravimetric. The physicochemical and tribological properties of the Fe3O4@PEG nanocomposites in aqueous glycerol were systematically evaluated on steel/steel contact for the first time. The aqueous glycerol solution added with 1.0 wt% Fe3O4@PEG showed no obvious precipitation after standing for 72 h and had good dispersion stability. Compared with the base aqueous glycerol, the Fe3O4@PEG nanocomposites exhibited excellent friction-reducing and anti-wear properties at an optimal concentration of 1.0 wt%, with a 41.4% decrease in friction coefficient and a 24.1% reduction in wear volume. Also, the Fe3O4@PEG nanocomposites in aqueous glycerol exhibited superior lubricating performance than unmodified Fe3O4. The boundary lubrication films formed on the surface were attributed to be the main factor in reducing friction and wear, and a possible lubrication mechanism was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Martini, A., Ramasamy, U.S., Len, M.: Review of viscosity modifier lubricant additives. Tribol. Lett. 66, 1–14 (2018). https://doi.org/10.1007/s11249-018-1007-0

    Article  CAS  Google Scholar 

  2. Lee, S., Muller, M.: Boundary lubrication of oxide surfaces by Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media. Tribol. Lett. 15, 231–239 (2003). https://doi.org/10.1023/a:1024861119372

    Article  CAS  Google Scholar 

  3. Drobek, T., Spencer, N.D.: Nanotribology of surface-grafted PEG layers in an aqueous environment. Langmuir 24, 1484–1488 (2008). https://doi.org/10.1021/la702289n

    Article  CAS  Google Scholar 

  4. Arcifa, A., Rossi, A.: Lubrication of Si-based tribopairs with a hydrophobic ionic liquid: the multiscale influence of water. J Phys. Chem. C. 122, 7331–7343 (2018). https://doi.org/10.1021/acs.jpcc.8b01671

    Article  CAS  Google Scholar 

  5. Ju, C., Zheng, D.: Tribological properties of green ILs containing MoS2 quantum dots with one-step preparation. Tribol. Lett. 68, 1–9 (2020). https://doi.org/10.1007/s11249-020-01314-9

    Article  CAS  Google Scholar 

  6. Zheng, D., Zhao, Q.: The interaction of two anticorrosive ionic liquid additives on the friction properties of water lubricants. Tribol. Int. 141, 237–249 (2020). https://doi.org/10.1016/j.triboint.2019.105948

    Article  CAS  Google Scholar 

  7. Zheng, D., Wang, X.: Anticorrosion and lubricating properties of a fully green lubricant. Tribol. Int. 130, 324–333 (2019). https://doi.org/10.1016/j.triboint.2018.08.014

    Article  CAS  Google Scholar 

  8. Zheng, G., Zhang, G.: Tribological properties and surface interaction of novel water-soluble ionic liquid in water-glycol. Tribol. Int. 116, 440–448 (2017). https://doi.org/10.1016/j.triboint.2017.08.001

    Article  CAS  Google Scholar 

  9. Bondarev, A.V., Fraile, A.: Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: experimental study and molecular dynamics simulation. Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2020.106493

    Article  Google Scholar 

  10. Ren, B., Gao, L.: Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives. Tribol. Int. 144, 106–114 (2020). https://doi.org/10.1016/j.triboint.2019.106114

    Article  CAS  Google Scholar 

  11. Wu, X., Zhao, G.: Investigating the tribological performance of nanosized MoS2 on graphene dispersion in perfluoropolyether under high vacuum. RSC Adv. 6, 98606–98610 (2016). https://doi.org/10.1039/c6ra22863a

    Article  CAS  Google Scholar 

  12. Yao, Y., Wang, X.: Tribological property of onion-like fullerenes as lubricant additive. Mater. Lett. 62, 2524–2527 (2008). https://doi.org/10.1016/j.matlet.2007.12.056

    Article  CAS  Google Scholar 

  13. Chen, L., Xu, H.: Preparation of Cu–Ni bimetallic nanoparticles surface-capped with dodecanethiol and their tribological properties as lubricant additive. Particuology 34, 89–96 (2017). https://doi.org/10.1016/j.partic.2016.12.006

    Article  CAS  Google Scholar 

  14. Huang, W., Wang, X.: Study on the synthesis and tribological property of Fe3O4 based magnetic fluids. Tribol. Lett. 33, 187–192 (2009). https://doi.org/10.1007/s11249-008-9407-1

    Article  CAS  Google Scholar 

  15. Wang, N., Wang, H.: High-efficient and environmental-friendly PTFE@SiO2 core-shell additive with excellent AW/EP properties in PAO6. Tribol. Int. 158, 106–121 (2021). https://doi.org/10.1016/j.triboint.2021.106930

    Article  CAS  Google Scholar 

  16. Lu, Z., Cao, Z.: Preparation and tribological properties of WS2 and WS2/TiO2 nanoparticles. Tribol. Int. 130, 308–316 (2019). https://doi.org/10.1016/j.triboint.2018.09.030

    Article  CAS  Google Scholar 

  17. Johnson, D., Hils, J.: Phosphate esters, thiophosphate esters and metal thiophosphates as lubricant additives. Lubricants 1, 132–148 (2013). https://doi.org/10.3390/lubricants1040132

    Article  Google Scholar 

  18. Zhang, X., Sun, W.: Investigation of the tribological properties of two different layered sodium silicates utilized as solid lubrication additives in lithium grease. Ind. Eng. Chem. Res. 53, 182–188 (2013). https://doi.org/10.1021/ie402481u

    Article  CAS  Google Scholar 

  19. Ye, C., Liu, W.: Room-temperature ionic liquids: a novel versatile lubricant. Chem .Commun. (Camb). (2001). https://doi.org/10.1039/b106935g

    Article  Google Scholar 

  20. Mello, V.S., Trajano, M.F.: Comparison between the action of nano-oxides and Conventional EP additives in boundary lubrication. Lubricants 8, 5–54 (2020). https://doi.org/10.3390/lubricants8050054

    Article  Google Scholar 

  21. Pham, S.T., Tieu, A.K.: Smart-Responsive Colloidal Capsules as an Emerging Tool to Design a Multifunctional Lubricant Additive. ACS Appl Mater Interfaces. 13, 7714–7724 (2021). https://doi.org/10.1021/acsami.0c20759

    Article  CAS  Google Scholar 

  22. Wu, X., Gong, K.: MoS2/WS2 quantum dots as high-performance lubricant additive in polyalkylene glycol for steel/steel contact at elevated temperature. Adv. Mater. Interfaces (2018). https://doi.org/10.1002/admi.201700859

    Article  Google Scholar 

  23. Lee, J., Cho, S.: Enhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additives. Tribol. Lett. 28, 203–208 (2007). https://doi.org/10.1007/s11249-007-9265-2

    Article  CAS  Google Scholar 

  24. Song, X., Qiu, Z.: Submicron-lubricant based on crystallized fe3o4 spheres for enhanced tribology performance. Chem. Mater. 26, 5113–5119 (2014). https://doi.org/10.1021/cm502426y

    Article  CAS  Google Scholar 

  25. Zhou, G., Zhu, Y.: Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil. Wear 301, 753–757 (2013). https://doi.org/10.1016/j.wear.2013.01.027

    Article  CAS  Google Scholar 

  26. Liu, L., Jiao, S.: A green design for lubrication: multifunctional system containing Fe3O4@MoS2 nanohybrid. ACS. Sustain. Chem. Eng. 6, 7372–7379 (2018). https://doi.org/10.1021/acssuschemeng.7b04801

    Article  CAS  Google Scholar 

  27. Yan, W., Ramakrishna, S.N.: Brushes, graft copolymers, or bottlebrushes? the effect of polymer architecture on the nanotribological properties of grafted-from assemblies. Langmuir 35, 11255–11264 (2019). https://doi.org/10.1021/acs.langmuir.9b01265

    Article  CAS  Google Scholar 

  28. Xu, Y., Geng, J.: Lubricating mechanism of Fe3O4@MoS2 core-shell nanocomposites as oil additives for steel/steel contact. Tribol. Int. 121, 241–251 (2018). https://doi.org/10.1016/j.triboint.2018.01.051

    Article  CAS  Google Scholar 

  29. Huang, J., Li, Y.: Preparation and tribological properties of core-shell Fe3O4@C microspheres. Tribol. Int. 129, 427–435 (2019). https://doi.org/10.1016/j.triboint.2018.08.036

    Article  CAS  Google Scholar 

  30. Zhang, Q., Wu, B.: Preparation, characterization and tribological properties of polyalphaolefin with magnetic reduced graphene oxide/Fe3O4. Tribol. Int. 141, 105952 (2020). https://doi.org/10.1016/j.triboint.2019.105952

    Article  CAS  Google Scholar 

  31. Huo, L., Zeng, X.: Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles. Sci Rep. 7, 40765 (2017). https://doi.org/10.1038/srep40765

    Article  CAS  Google Scholar 

  32. Karimi, S., Namazi, H.: Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. J. Alloys Compd. 879, 160426 (2021). https://doi.org/10.1016/j.jallcom.2021.160426

    Article  CAS  Google Scholar 

  33. Totolin, V., Goecerler, H.: The role of ferric oxide nanoparticles in improving lubricity and tribo-electrochemical performance during chemicalmechanical polishing. Tribol. Lett. 65, 1–12 (2017). https://doi.org/10.1007/s11249-016-0806-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2018YFB2000601) and National Natural Science Foundation of China (NSFC 51875553).

Funding

Funding was supported by National Key R&D Program of China, (Grant No. 2018YFB2000601), Natural Science Foundation of China, (Grant No. 51875553).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuiliang Gong or Xiaobo Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Zhao, Q., Hu, M. et al. Tribological Behavior of Novel Core–Shell Fe3O4@PEG Nano-Additives. Tribol Lett 70, 116 (2022). https://doi.org/10.1007/s11249-022-01656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01656-6

Keywords

Navigation