Skip to main content

Advertisement

Log in

Regulating Rolling and Sliding of Carbon Nanotubes on Graphite Through Doping and Charging

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nanostructures with controllable motion are indispensable to developing nanodevices. However, it still presents a fundamental challenge to effectively regulate the relative motion at the nanoscale, such as sliding and rolling. Since the potential energy surface that dictates the relative motion at the nanoscale is intrinsically determined by the underlying electron density, we employ doping and charging to regulate the sliding and rolling of carbon nanotubes (CNTs) on graphite (GRA). Herein, we focus on the single-walled (6, 6) CNTs on the fixed monolayer graphene, using density functional theory. We find that charging effectively enables N-doped CNTs to switch between sliding and rolling on GRA, whereas other dopants, such as B, Al, and P elements, generally cause the sliding preference for CNTs on GRA. Our findings uncover the difference and correlation between doping and charging in tuning the charge density as well as nanofriction. Therefore, our study is expected to provide some guide to the modulation of nano(electro) mechanical devices from the electronic point of view.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2(5), 22–29 (2007). https://doi.org/10.1016/S1748-0132(07)70140-8

    Article  Google Scholar 

  2. Falvo, M., Taylor Ii, R., Helser, A., Chi, V., Brooks, F.P., Jr., Washburn, S., Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397(6716), 236–238 (1999). https://doi.org/10.1038/16662

    Article  CAS  Google Scholar 

  3. Buldum, A., Lu, J.P.: Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83(24), 5050 (1999). https://doi.org/10.1103/PhysRevLett.83.5050

    Article  CAS  Google Scholar 

  4. Falvo, M., Steele, J., Taylor, I., Superfine, R.: Gearlike rolling motion mediated by commensurate contact: carbon nanotubes on HOPG. Phys. Rev. B 62(16), 10665 (2000). https://doi.org/10.1103/PhysRevB.62.R10665

    Article  Google Scholar 

  5. Falvo, M., Steele, J., Taylor, R., Superfine, R.: Evidence of commensurate contact and rolling motion: AFM manipulation studies of carbon nanotubes on HOPG. Tribol. Lett. 9(1), 73–76 (2000). https://doi.org/10.1023/A:1018808511550

    Article  CAS  Google Scholar 

  6. Chen, Y., Guo, C.-S., Gao, W., Jiang, Q.: Effective scheme for understanding rolling and sliding at nanoscale. Carbon 161, 269–276 (2020). https://doi.org/10.1016/j.carbon.2020.01.085

    Article  CAS  Google Scholar 

  7. Mandelli, D., Guerra, R.: Friction of physisorbed nanotubes: rolling or sliding? Nanoscale 12(24), 13046–13054 (2020). https://doi.org/10.1039/D0NR01016B

    Article  CAS  Google Scholar 

  8. Reguzzoni, M., Fasolino, A., Molinari, E., Righi, M.C.: Potential energy surface for graphene on graphene: ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86(24), 245434 (2012). https://doi.org/10.1103/PhysRevB.86.245434

    Article  CAS  Google Scholar 

  9. Wolloch, M., Levita, G., Restuccia, P., Righi, M.: Interfacial charge density and its connection to adhesion and frictional forces. Phys. Rev. Lett. 121(2), 026804 (2018). https://doi.org/10.1103/PhysRevLett.121.026804

    Article  CAS  Google Scholar 

  10. Zhang, B., Cheng, Z., Zhang, G., Lu, Z., Ma, F., Zhou, F.: First-principles theory of atomic-scale friction explored by an intuitive charge density fluctuation surface. Phys. Chem. Chem. Phys. 21(44), 24565–24571 (2019). https://doi.org/10.1039/C9CP04825A

    Article  CAS  Google Scholar 

  11. Lv, R., Cui, T., Jun, M.-S., Zhang, Q., Cao, A., Su, D.S., Zhang, Z., Yoon, S.-H., Miyawaki, J., Mochida, I., et al.: Open-ended, n-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater. 21(5), 999–1006 (2011). https://doi.org/10.1002/adfm.201001602

    Article  CAS  Google Scholar 

  12. Wei, Q., Tong, X., Zhang, G., Qiao, J., Gong, Q., Sun, S.: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5(3), 1574–1602 (2015). https://doi.org/10.3390/catal5031574

    Article  CAS  Google Scholar 

  13. Zhang, C., Ma, B., Zhou, Y.: Three-dimensional polypyrrole derived n-doped carbon nanotube aerogel as a high-performance metal-free catalyst for oxygen reduction reaction. ChemCatChem 11(22), 5495–5504 (2019). https://doi.org/10.1002/cctc.201901334

    Article  CAS  Google Scholar 

  14. Li, Y.-H., Hung, T.-H., Chen, C.-W.: A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes. Carbon 47(3), 850–855 (2009). https://doi.org/10.1016/j.carbon.2008.11.048

    Article  CAS  Google Scholar 

  15. Abbasi, M., Nemati-Kande, E.: Enhancing the reactivity of carbon-nanotube for carbon monoxide detection by mono-and co-doping of boron and nitrogen heteroatoms: A DFT and TD-DFT study. J. Phys. Chem. Solids 158, 110230 (2021). https://doi.org/10.1016/j.jpcs.2021.110230

    Article  CAS  Google Scholar 

  16. Zhao, Q., Buongiorno Nardelli, M., Lu, W., Bernholc, J.: Carbon nanotube- metal cluster composites: a new road to chemical sensors? Nano Lett. 5(5), 847–851 (2005). https://doi.org/10.1021/nl050167w

    Article  CAS  Google Scholar 

  17. Wang, R., Zhang, D., Sun, W., Han, Z., Liu, C.: A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. J. Mol. Struct.-Theochem. 806(1–3), 93–97 (2007). https://doi.org/10.1016/j.theochem.2006.11.012

    Article  CAS  Google Scholar 

  18. Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., Scheffler, M.: Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180(11), 2175–2196 (2009). https://doi.org/10.1016/j.cpc.2009.06.022

    Article  CAS  Google Scholar 

  19. Cao, B., Zhang, B., Jiang, X., Zhang, Y., Pan, C.: Direct synthesis of high concentration n-doped coiled carbon nanofibers from amine flames and its electrochemical properties. J. Power Sour. 196(18), 7868–7873 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.016

    Article  CAS  Google Scholar 

  20. Larsen, A.H., Mortensen, J.J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C., et al.: The atomic simulation environment-a python library for working with atoms. J. Phys. Condens. Matter. 29(27), 273002 (2017). https://doi.org/10.1088/1361-648x/aa680e

    Article  CAS  Google Scholar 

  21. Miura, K., Takagi, T., Kamiya, S., Sahashi, T., Yamauchi, M.: Natural rolling of zigzag multiwalled carbon nanotubes on graphite. Nano Lett. 1(3), 161–163 (2001). https://doi.org/10.1021/nl015513y

    Article  CAS  Google Scholar 

  22. Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010). https://doi.org/10.1126/science.1184167

    Article  CAS  Google Scholar 

  23. Mandelli, D., Ouyang, W., Urbakh, M., Hod, O.: The princess and the nanoscale pea: long-range penetration of surface distortions into layered materials stacks. ACS Nano 13(7), 7603–7609 (2019). https://doi.org/10.1021/acsnano.9b00645

    Article  CAS  Google Scholar 

  24. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  25. Tkatchenko, A., Scheffler, M.: Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102(7), 073005 (2009). https://doi.org/10.1103/PhysRevLett.102.073005

    Article  CAS  Google Scholar 

  26. Tkatchenko, A., DiStasio, R.A., Jr., Car, R., Scheffler, M.: Accurate and efficient method for many-body van der waals interactions. Phys. Rev. Lett. 108(23), 236402 (2012). https://doi.org/10.1103/PhysRevLett.108.236402

    Article  CAS  Google Scholar 

  27. Ambrosetti, A., Reilly, A.M., DiStasio, R.A., Jr., Tkatchenko, A.: Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140(18), 18–508 (2014). https://doi.org/10.1063/1.4865104

    Article  CAS  Google Scholar 

  28. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  29. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  30. Bultinck, P., Van Alsenoy, C., Ayers, P.W., Carbó-Dorca, R.: Critical analysis and extension of the hirshfeld atoms in molecules. J. Chem. Phys. 126(14), 144111 (2007). https://doi.org/10.1063/1.2715563

    Article  CAS  Google Scholar 

  31. Bucko, T., Lebegue, S., Hafner, J., Angyan, J.G.: Improved density dependent correction for the description of London dispersion forces. J. Chem. Theory Comput. 9(10), 4293–4299 (2013). https://doi.org/10.1021/ct400694h

    Article  CAS  Google Scholar 

  32. Bučko, T., Lebègue, S., Ángyán, J.G., Hafner, J.: Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative hirshfeld partitioning. J. Chem. Phys. 141(3), 034114 (2014). https://doi.org/10.1063/1.4890003

    Article  CAS  Google Scholar 

  33. Golberg, D., Mitome, M., Yin, L., Bando, Y.: In situ growth of indium nanocrystals on INP nanorods mediated by electron beam of transmission electron microscope. Chem. Phys. Lett. 416(4–6), 321–326 (2005). https://doi.org/10.1016/j.cplett.2005.09.082

    Article  CAS  Google Scholar 

  34. Andrés, J., Gracia, L., Gonzalez-Navarrete, P., Longo, V.M., Avansi, W., Volanti, D.P., Ferrer, M.M., Lemos, P.S., La Porta, F.A., Hernandes, A.C., et al.: Structural and electronic analysis of the atomic scale nucleation of ag on \(\alpha\)-Ag2WO4 induced by electron irradiation. Sci. Rep. 4(1), 1–7 (2014). https://doi.org/10.1038/srep05391

    Article  CAS  Google Scholar 

  35. Andres, J., Gouveia, A.F., Gracia, L., Longo, E., Manzeppi Faccin, G., da Silva, E.Z., Pereira, D.H., San-Miguel, M.A.: Formation of Ag nanoparticles under electron beam irradiation: atomistic origins from first-principles calculations. Int. J. Quantum Chem. 118(9), 25551 (2018). https://doi.org/10.1002/qua.25551

    Article  CAS  Google Scholar 

  36. Osman, H.H., Andres, J., Salvado, M.A., Recio, J.M.: Chemical bond formation and rupture processes: an application of DFT-chemical pressure approach. J. Phys. Chem. C 122(37), 21216–21225 (2018). https://doi.org/10.1021/acs.jpcc.8b06947

    Article  CAS  Google Scholar 

  37. Shin, H., Kim, K.S., Simard, B., Klug, D.D.: Interlayer locking and atomic-scale friction in commensurate small-diameter boron nitride nanotubes. Phys. Rev. B 95(8), 085406 (2017). https://doi.org/10.1103/PhysRevB.95.085406

    Article  Google Scholar 

  38. Hod, O.: The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14(11), 2376–2391 (2013). https://doi.org/10.1002/cphc.201300259

    Article  CAS  Google Scholar 

  39. Oz, I., Leven, I., Itkin, Y., Buchwalter, A., Akulov, K., Hod, O.: Nanotube motion on layered materials: a registry perspective. J. Phys. Chem. C 120(8), 4466–4470 (2016). https://doi.org/10.1021/acs.jpcc.6b00651

    Article  CAS  Google Scholar 

  40. Choe, J., Lee, Y., Fang, L., Lee, G.-D., Bao, Z., Kim, K.: Direct imaging of rotating molecules anchored on graphene. Nanoscale 8(27), 13174–13180 (2016). https://doi.org/10.1039/C6NR04251A

    Article  CAS  Google Scholar 

  41. Nadal-Guardia, R., Dehe, A., Aigner, R., Castaner, L.M.: Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point. J. Microelectromech. Syst. 11(3), 255–263 (2002). https://doi.org/10.1109/JMEMS.2002.1007404

    Article  CAS  Google Scholar 

  42. Seeger, J.I., Boser, B.E.: Charge control of parallel-plate, electrostatic actuators and the tip-in instability. J. Microelectromech. Syst. 12(5), 656–671 (2003). https://doi.org/10.1109/JMEMS.2003.818455

    Article  Google Scholar 

  43. Maithripala, D., Kawade, B., Berg, J., Dayawansa, W.: A general modelling and control framework for electrostatically actuated mechanical systems. Int. J. Robust Nonlinear Control 15(16), 839–857 (2005). https://doi.org/10.1002/rnc.1027

    Article  Google Scholar 

  44. Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuator A-Phys. 214, 187–218 (2014). https://doi.org/10.1016/j.sna.2014.04.025

    Article  CAS  Google Scholar 

  45. Zaghloul, U., Bhushan, B., Pons, P., Papaioannou, G., Coccetti, F., Plana, R.: On the influence of environment gases, relative humidity and gas purification on dielectric charging/discharging processes in electrostatically driven MEMS/NEMS devices. Nanotechnology 22(3), 035705 (2010). https://doi.org/10.1088/0957-4484/22/3/035705

    Article  CAS  Google Scholar 

  46. Li, Q., Liu, X.-Z., Kim, S.-P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., Carpick, R.W.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14(9), 5212–5217 (2014). https://doi.org/10.1021/nl502147t

    Article  CAS  Google Scholar 

  47. Zambudio, A., Gnecco, E., Colchero, J., Pérez, R., Gómez-Herrero, J., Gómez-Navarro, C.: Fine defect engineering of graphene friction. Carbon 182, 735–741 (2021). https://doi.org/10.1016/j.carbon.2021.06.064

    Article  CAS  Google Scholar 

  48. Leenaerts, O., Peelaers, H., Hernández-Nieves, A., Partoens, B., Peeters, F.: First-principles investigation of graphene fluoride and graphane. Phy. Rev. B 82(19), 195436 (2010). https://doi.org/10.1103/PhysRevB.82.195436

    Article  CAS  Google Scholar 

  49. Wang, L.-F., Ma, T.-B., Hu, Y.-Z., Wang, H., Shao, T.-M.: Ab initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C 117(24), 12520–12525 (2013). https://doi.org/10.1021/jp401097a

    Article  CAS  Google Scholar 

  50. Wang, J., Wang, F., Li, J., Wang, S., Song, Y., Sun, Q., Jia, Y.: Theoretical study of superlow friction between two single-side hydrogenated graphene sheets. Tribol. Lett. 48(2), 255–261 (2012). https://doi.org/10.1007/s11249-012-0015-8

    Article  CAS  Google Scholar 

  51. Kolmogorov, A.N., Crespi, V.H.: Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett.D 85(22), 4727 (2000). https://doi.org/10.1103/PhysRevLett.85.4727

    Article  CAS  Google Scholar 

  52. Garel, J., Leven, I., Zhi, C., Nagapriya, K., Popovitz-Biro, R., Golberg, D., Bando, Y., Hod, O., Joselevich, E.: Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett. 12(12), 6347–6352 (2012). https://doi.org/10.1021/nl303601d

    Article  CAS  Google Scholar 

  53. Leven, I., Guerra, R., Vanossi, A., Tosatti, E., Hod, O.: Multiwalled nanotube faceting unravelled. Nat. Nanotechnol. 11(12), 1082–1086 (2016). https://doi.org/10.1038/nnano.2016.151

    Article  CAS  Google Scholar 

  54. Guerra, R., Leven, I., Vanossi, A., Hod, O., Tosatti, E.: Smallest archimedean screw: facet dynamics and friction in multiwalled nanotubes. Nano Lett. 17(9), 5321–5328 (2017). https://doi.org/10.1021/acs.nanolett.7b01718

    Article  CAS  Google Scholar 

  55. Popov, A.M., Lebedeva, I.V., Knizhnik, A.A., Lozovik, Y.E., Potapkin, B.V.: Molecular dynamics simulation of the self-retracting motion of a graphene flake. Phy. Rev. B 84(24), 245437 (2011). https://doi.org/10.1103/PhysRevB.84.245437

    Article  CAS  Google Scholar 

  56. Yang, J., Liu, Z., Grey, F., Xu, Z., Li, X., Liu, Y., Urbakh, M., Cheng, Y., Zheng, Q.: Observation of high-speed microscale superlubricity in graphite. Phy. Rev. Lett. 110(25), 255504 (2013). https://doi.org/10.1103/PhysRevLett.110.255504

    Article  CAS  Google Scholar 

  57. Hod, O., Meyer, E., Zheng, Q., Urbakh, M.: Structural superlubricity and ultralow friction across the length scales. Nature 563(7732), 485–492 (2018). https://doi.org/10.1038/s41586-018-0704-z

    Article  CAS  Google Scholar 

  58. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004). https://doi.org/10.1103/PhysRevLett.92.126101

    Article  CAS  Google Scholar 

  59. Buldum, A., Ciraci, S., Erkoc, S.: Lateral translation of an Xe atom on metal surfaces. J. Phys.: Condens. Matter 7(45), 8487 (1995). https://doi.org/10.1088/0953-8984/7/45/004

    Article  CAS  Google Scholar 

  60. Buldum, A., Ciraci, S.: Controlled lateral and perpendicular motion of atoms on metal surfaces. Phys. Rev. B 54(3), 2175 (1996). https://doi.org/10.1103/PhysRevB.54.2175

    Article  CAS  Google Scholar 

  61. Gotsmann, B.: Sliding on vacuum. Nat. Mater. 10(2), 87–88 (2011). https://doi.org/10.1038/nmat2947

    Article  CAS  Google Scholar 

  62. Sun, C., Zhou, R., Zhao, Z., Bai, B.: Nanoconfined fluids: what can we expect from them? J. Phys. Chem. Lett. 11(12), 4678–4692 (2020). https://doi.org/10.1021/acs.jpclett.0c00591

    Article  CAS  Google Scholar 

  63. Marom, N., Bernstein, J., Garel, J., Tkatchenko, A., Joselevich, E., Kronik, L., Hod, O.: Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett. 105(4), 046801 (2010). https://doi.org/10.1103/PhysRevLett.105.046801

    Article  CAS  Google Scholar 

  64. Shtogun, Y.V., Woods, L.M.: Many-body van der Waals interactions between graphitic nanostructures. J. Phys. Chem. Lett. 1(9), 1356–1362 (2010). https://doi.org/10.1021/jz100309m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Young Thousand Talents Program of China, the National Natural Science Foundation of China (Nos. 11974128, 22173034, 52130101), the Program for Innovative Research Team (in Science and Technology) in University of Jilin Province, and the computing resources of High Performance Computing Center of Jilin University.

Funding

National Natural Science Foundation of China (Nos. 11974128, 22173034, 52130101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Ming Li or Wang Gao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11249_2022_1653_MOESM1_ESM.pdf

Supplementary file1 (PDF 16024 kb). We supply one supplementary PDF file, containing five sections: 1. Computational details; 2. Doping effect: N and B; 3. Doping effect: P and Al; 4. Charging effect: N and B doping; 5. Mechanism. The online version contains supplementary material available at https:

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Li, Q.M. & Gao, W. Regulating Rolling and Sliding of Carbon Nanotubes on Graphite Through Doping and Charging. Tribol Lett 70, 112 (2022). https://doi.org/10.1007/s11249-022-01653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01653-9

Keywords

Navigation