Skip to main content

Electrochemically Driven Carbon-Based Materials as EAPs: Fundamentals and Device Configurations

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

The varieties of different carbon structures offer a great basis for EAPs. They are most widely used electrode materials in low-voltage actuation generation. So far, carbon nanotubes (CNTs) have gained unrivaled attention. Their popularity is reflected in a production capacity that presently exceeds several thousand tons per year. In addition to carbon nanotubes, other electrically conductive carbon allotropes that contain electron-rich conjugated double bonds can be also successfully used as actuator electrodes. The following chapter focuses on most common carbon material-based EAPs. More specifically, on graphite which consists of multiple stacked conducting layers of graphene, on porous amorphous carbons, on fullerenes (C60, C70) and on carbon nanotubes (CNT). The porous amorphous carbons will include activated carbons, carbon nanofibers and filaments, carbide-derived conductive carbons synthesized from different precursors, and carbon aerogels. The chapter introduces these carbons as independently standing actuators or as materials for actuator electrodes and presents different approaches toward actuator fabrication. The ability to manipulate the morphology of these carbons, thus tuning the mechanical performance of the actuators, is also discussed. Essential differences in electrochemical, electro(chemo)mechanical properties and overall device configuration of carbon material-based actuators compared to other EAPs will be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akle BJ, Bennett MD, Leo DJ (2006) High-strain ionomeric–ionic liquid electroactive actuators. Sensors Actuators A Phys 126:173–181

    Google Scholar 

  • Akle BJ, Bennett MD, Leo DJ, Wiles KB, McGrath JE (2007) Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers. J Mater Sci 42:7031–7041

    Google Scholar 

  • Arruda TM, et al (2013) In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy Environ Sci 6:225

    Google Scholar 

  • Arulepp M, et al (2006) The advanced carbide-derived carbon based supercapacitor. J Power Sources 162:1460–1466

    Google Scholar 

  • Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440

    Google Scholar 

  • Asaka K, Mukai K, Sugino T, Kiyohara K (2013) Ionic electroactive polymer actuators based on nano-carbon electrodes. Polym Int 62:1263–1270

    Google Scholar 

  • Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW, Kim Y, Adamczyk L, García RE, Dudney N, Kalinin SV et al (2010) Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat Nanotechnol 5:749–754

    Google Scholar 

  • Baughman RH (1999) Carbon nanotube actuators. Science (80-.) 284:1340–1344

    Google Scholar 

  • Carpi F, Smela E (2009) Biomedical applications of electroactive polymer actuators. Biomedical applications of electroactive polymer actuators. John Wiley & Sons, Ltd., Chichester. doi:10.1002/9780470744697

    Google Scholar 

  • Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Google Scholar 

  • Chun et al (2014) Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nat Commun 5:3322

    Google Scholar 

  • Conzuelo LV, Arias-Pardilla J, Cauich-Rodríguez JV, Smit MA, Otero TF (2010) Sensing and tactile artificial muscles from reactive materials. Sensors (Basel) 10:2638–2674

    Google Scholar 

  • Foroughi J, et al (2011) Torsional carbon nanotube artificial muscles. Science 334:494–497

    Google Scholar 

  • Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chemistry 13:5048–5058

    Google Scholar 

  • Giménez P, et al (2012) Capacitive and faradic charge components in high-speed carbon nanotube actuator. Electrochim Acta 60:177–183

    Google Scholar 

  • Han J, Globus A, Jaffe R, Deardorff G (1997) Nanotechnology 8:95–102

    Article  Google Scholar 

  • Hantel MM, Presser V, Kötz R, Gogotsi Y (2011) In situ electrochemical dilatometry of carbide-derived carbons. Electrochem Commun 13:1221–1224

    Google Scholar 

  • Imaizumi S, Kato Y, Kokubo H, Watanabe M (2012) Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures. J Phys Chem B 116:5080–5089

    Google Scholar 

  • Jager EWH (2000) Microfabricating conjugated polymer actuators. Science (80-.) 290:1540–1545

    Google Scholar 

  • Jänes A, Permann L, Arulepp M, Lust E (2004) Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions. Electrochem Commun 6:313–318

    Google Scholar 

  • Jänes A, Kurig H, Lust E (2007) Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon N Y 45:1226–1233

    Google Scholar 

  • Jo C, Pugal D, Oh I-K, Kim KJ, Asaka K (2013) Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci 38:1037–1066

    Google Scholar 

  • Kaasik F, Torop J, Peikolainen A-L, Koel M, Aabloo A (2011) Carbon aerogel based electrode material for EAP actuators. In: Bar-Cohen Y, Carpi F (eds) Proceedings of SPIE – the international society for optical engineering, San Diego, California, 7976, p. 79760O–79760O–8

    Google Scholar 

  • Kaasik F, et al (2013) Anisometric charge dependent swelling of porous carbon in an ionic liquid. Electrochem Commun 34:196–199

    Google Scholar 

  • Kong L, Chen W (2014) Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv Mater 26:1025–1043

    Google Scholar 

  • Kosidlo U, et al (2013) Nanocarbon based ionic actuators–a review. Smart Mater Struct 22:104022

    Google Scholar 

  • Li J, et al (2011) Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 11:4636–4641

    Google Scholar 

  • Lima MD, et al (2012) Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338:928–932

    Google Scholar 

  • Liu Q, et al (2014) Nanostructured carbon materials based electrothermal air pump actuators. Nanoscale 6:6932–6938

    Google Scholar 

  • Melling D, Wilson S, Jager EWH (2013) The effect of film thickness on polypyrrole actuation assessed using novel non-contact strain measurements. Smart Mater Struct 22:104021

    Google Scholar 

  • Must I, et al (2013) Mechanoelectrical impedance of a carbide-derived carbon-based laminate motion sensor at large bending deflections. Smart Mater Struct 22:104015

    Google Scholar 

  • Otero TF, Alfaro M, Martinez V, Perez MA, Martinez JG (2013) Biomimetic structural electrochemistry from conducting polymers: processes, charges, and energies. Coulovoltammetric results from films on metals revisited. Adv Funct Mater 23:3929–3940

    Google Scholar 

  • Palmre V, et al (2009) Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Mater Struct 18:095028

    Google Scholar 

  • Palmre V, et al (2010) Ionic polymer metal composites with nanoporous carbon electrodes. In: Electroactive polymer actuators and devices (EAPAD) 2010. SPIE – The International Society for Optical Engineering. San Diego, California, p. 76421D (9 pp)

    Google Scholar 

  • Palmre V, et al (2012) Impact of carbon nanotube additives on carbide-derived carbon-based electroactive polymer actuators. Carbon N Y 50:4351–4358

    Google Scholar 

  • Pech D, et al (2010) Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources 195:1266–1269

    Google Scholar 

  • Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons – from porous networks to nanotubes and graphene. Adv Funct Mater 21:810–833

    Google Scholar 

  • Pugal D, Jung K, Aabloo A, Kim KJ (2010) Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives. Polym Int 59:279–289

    Google Scholar 

  • Punning A, et al (2014) J Intell Mater Syst Struct 25:2267–2275. doi:10.1177/1045389X14546656

    Google Scholar 

  • Ruch PW, et al (2010) A dilatometric and small-angle X-ray scattering study of the electrochemical activation of mesophase pitch-derived carbon in non-aqueous electrolyte solution. Carbon N Y 48:1880–1888

    Google Scholar 

  • Sugino T, Kiyohara K, Takeuchi I, Mukai K, Asaka K (2009) Actuator properties of the complexes composed by carbon nanotube and ionic liquid: the effects of additives. Sensors Actuators B Chem 141:179–186

    Google Scholar 

  • Takeuchi I, et al (2010) Electrochemical impedance spectroscopy and electromechanical behavior of bucky-gel actuators containing ionic liquids. J Phys Chem C 114:14627–14634

    Google Scholar 

  • Terasawa N, Takeuchi I (2014) Li ion/vapor grown carbon fiber polymer actuators show higher performance than single-walled carbon nanotube polymer actuators. J Mater Chem A 2:130

    Google Scholar 

  • Terasawa N, Mukai K, Asaka K (2012a) Superior performance of a vapor grown carbon fiber polymer actuator containing ruthenium oxide over a single-walled carbon nanotube. J Mater Chem 22:15104

    Google Scholar 

  • Terasawa N, Mukai K, Yamato K, Asaka K (2012b) Superior performance of manganese oxide/multi-walled carbon nanotubes polymer actuator over ruthenium oxide/multi-walled carbon nanotubes and single-walled carbon nanotubes. Sensors Actuators B Chem 171–172:595–601

    Google Scholar 

  • Timoshenko S (1983) History of strength of materials. New York, NY: Dover

    Google Scholar 

  • Torop J, et al (2009) Nanoporous carbide-derived carbon material-based linear actuators. Materials 3:9–25

    Google Scholar 

  • Torop J, et al (2011) Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon N Y 49:3113–3119

    Google Scholar 

  • Torop J, et al (2012) Nanoporous carbide-derived carbon based actuators modified with gold foil: prospect for fast response and low voltage applications. Sensors Actuators B Chem 161:629–634

    Google Scholar 

  • Torop J, Aabloo A, Jager EWH (2014a). Novel actuators based on polypyrrole/carbide-derived carbon hybrid materials. Carbon N Y 80:387–395

    Google Scholar 

  • Torop J, et al (2014b) Microporous and mesoporous carbide-derived carbons for strain modification of electromechanical actuators. Langmuir 30:2583–2587

    Google Scholar 

  • Weiss NO, et al (2012) Graphene: an emerging electronic material. Adv Mater 24:5782–5825

    Google Scholar 

  • Wilson SA, et al (2007) New materials for micro-scale sensors and actuators. Mater Sci Eng R Rep 56:1–129

    Google Scholar 

  • Xi B, et al (2009) Electrochemical pneumatic actuators utilising carbon nanotube electrodes. Sensors Actuators B Chem 138:48–54

    Google Scholar 

  • Zhang X, et al (2014) Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat Commun 5:2983

    Google Scholar 

  • Zheng W, et al (2011) Artificial muscles based on polypyrrole/carbon nanotube laminates. Adv Mater 23:2966–2970

    Google Scholar 

  • Zhu Y, et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Google Scholar 

  • Zhu S-E, et al (2011) Graphene-based bimorph microactuators. Nano Lett 11:977–981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvo Aabloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Torop, J., Peikolainen, AL., Aabloo, A., Koel, M., Asaka, K., Baughman, R.H. (2016). Electrochemically Driven Carbon-Based Materials as EAPs: Fundamentals and Device Configurations. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_18

Download citation

Publish with us

Policies and ethics