Skip to main content
Log in

Anisotropic Friction Derived from the Layered Arrangement of the Oriented Graphite Flakes in the Copper–Iron Matrix Composite

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The friction behavior of copper–iron matrix composite containing oriented graphite flakes has been measured in three sliding modes corresponding to the graphite flakes, namely one random direction on the in-plane surface and the other two directions of parallel and vertical to the layered texture on the cross-sectional surface. At the in-plane surface, with the normal load increasing, the friction coefficient turned from the lowest to the highest because of aggravated plastic contact. At the cross-sectional surface, the friction coefficient showed a decline owing to high hardness in this face and that in the parallel direction was obviously higher than that in the vertical direction, especially at the low normal load, due to sustained adhesion caused by metal ridges and high energy dissipation originated from graphite fracture. The wear rate at the in-plane surface proved higher, which can be attributed to small hardness and low shear strength, while little differences of the wear rates were exhibited between the two directions of the cross-sectional surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or analyzed are shown clearly in the manuscript.

References

  1. Senouci, A., Frene, J., Zaidi, H.: Wear mechanism in graphite-copper electrical sliding contact. Wear 225, 949–953 (1999). https://doi.org/10.1016/S0043-1648(98)00412-8

    Article  Google Scholar 

  2. Cho, K.H., Hong, U.S., Lee, K.S., Jang, H.: Tribological properties and electrical signal transmission of copper-graphite composites. Tribol. Lett. 27(3), 301–306 (2007). https://doi.org/10.1007/s11249-007-9234-9

    Article  CAS  Google Scholar 

  3. Grandin, M., Wiklund, U.: Influence of mechanical and electrical load on a copper/copper-graphite sliding electrical contact. Tribol. Int. 121, 1–9 (2018). https://doi.org/10.1016/j.triboint.2018.01.004

    Article  CAS  Google Scholar 

  4. Grandin, M., Wiklund, U.: Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials. Wear 398, 227–235 (2018). https://doi.org/10.1016/j.wear.2017.12.012

    Article  CAS  Google Scholar 

  5. Casstevens, J.M., Rylander, H.G., Eliezer, Z.: Influence of high velocities and high-current densities on friction and wear behavior of copper-graphite brushes. Wear 48(1), 121–130 (1978). https://doi.org/10.1016/0043-1648(78)90142-4

    Article  CAS  Google Scholar 

  6. Yasar, I., Canakci, A., Arslan, F.: The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current. Tribol. Int. 40(9), 1381–1386 (2007). https://doi.org/10.1016/j.triboint.2007.03.005

    Article  CAS  Google Scholar 

  7. He, D.H., Manory, R.R., Grady, N.: Wear of railway contact wires against current collector materials. Wear 215(1–2), 146–155 (1998). https://doi.org/10.1016/S0043-1648(97)00262-7

    Article  CAS  Google Scholar 

  8. Wei, Q., Xu, L.X., Shi, H.J., Shao, L.F., Hao, X.Z.: Study on network structure C–Cu composites of pantograph slid plates. Adv. Mater. Res. 150–151, 941–945 (2011). https://doi.org/10.4028/www.scientific.net/AMR.150-151.941

    Article  CAS  Google Scholar 

  9. Hong, Q., Li, M.W., Wei, J.Z., Song, H., Xue, F., Sun, M.F.: New carbon–copper composite material applied in rail-type launching system. IEEE Trans. Magn. 43(1), 137–140 (2007). https://doi.org/10.1109/TMAG.2006.887534

    Article  CAS  Google Scholar 

  10. Kolluri, D.K., Satapathy, B.K., Bijwe, J., Ghosh, A.K.: Analysis of load and temperature dependence of tribo-performance of graphite filled phenolic composites. Mater. Sci. Eng. A 456(1–2), 162–169 (2007). https://doi.org/10.1016/j.msea.2006.12.027

    Article  CAS  Google Scholar 

  11. Magampa, P.P., Manyala, N., Focke, W.W.: Properties of graphite composite based on natural and synthetic graphite powders and a phenolic novolac binder. J. Nucl. Mater. 436(1–3), 76–83 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.315

    Article  CAS  Google Scholar 

  12. Bai, H., Xue, C., Lyu, J.L., Li, J., Chen, G.X., Yu, J.H., et al.: Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface. Compos. A 106, 42–51 (2018). https://doi.org/10.1016/j.compositesa.2017.11.019

    Article  CAS  Google Scholar 

  13. Liu, B., Zhang, D.Q., Li, X.F., He, Z., Guo, X.H., Liu, Z.J., et al.: Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites. J. Alloys Compd. 766, 382–390 (2018). https://doi.org/10.1016/j.jallcom.2018.06.129

    Article  CAS  Google Scholar 

  14. Yuan, G.M., Li, X.K., Dong, Z.J., Westwood, A., Cui, Z.W., Cong, Y., et al.: Graphite blocks with preferred orientation and high thermal conductivity. Carbon 50(1), 175–182 (2012). https://doi.org/10.1016/j.carbon.2011.08.017

    Article  CAS  Google Scholar 

  15. Zhang, H.W., Guo, Z.R., Gao, H., Chang, T.C.: Stiffness-dependent interlayer friction of graphene. Carbon 94, 60–66 (2015). https://doi.org/10.1016/j.carbon.2015.06.024

    Article  CAS  Google Scholar 

  16. Carpick, R.W., Sasaki, D.Y., Burns, A.R.: Large friction anisotropy of a polydiacetylene monolayer. Tribol. Lett. 7(2–3), 79–85 (1999). https://doi.org/10.1023/A:1019113218650

    Article  CAS  Google Scholar 

  17. He, B., Chen, W., Wang, Q.J.: Surface texture effect on friction of a microtextured poly (dimethylsiloxane) (PDMS). Tribol. Lett. 31(3), 187–197 (2008). https://doi.org/10.1007/s11249-008-9351-0

    Article  CAS  Google Scholar 

  18. Yuan, H.Z., Wu, K., Zhang, J.Y., Wang, Y.Q., Liu, G., Sun, J.: Curvature-controlled wrinkling surfaces for friction. Adv. Mater. 31(25), 1900933 (2019). https://doi.org/10.1002/adma.201900933

    Article  CAS  Google Scholar 

  19. Ito, S., Takahashi, K., Sasaki, S.: Generation mechanism of friction anisotropy by surface texturing under boundary lubrication. Tribol. Int. 149, 105598 (2020). https://doi.org/10.1016/j.triboint.2019.02.006

    Article  Google Scholar 

  20. Skinner, J., Gane, N., Tabor, D.: Micro-friction of graphite. Nat. Phys. Sci. 232, 195–196 (1971). https://doi.org/10.1038/physci232195a0

    Article  CAS  Google Scholar 

  21. Xiao, J.K., Zhang, L., Zhou, K.C., Li, J.G., Xie, X.L., Li, Z.Y.: Anisotropic friction behaviour of highly oriented pyrolytic graphite. Carbon 65, 53–62 (2013). https://doi.org/10.1016/j.carbon.2013.07.101

    Article  CAS  Google Scholar 

  22. Choi, J.S., Kim, J.S., Byun, I.S., Lee, D.H., Lee, M.J., Park, B.H., et al.: Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 333(6042), 607–610 (2011). https://doi.org/10.1126/science.1207110

    Article  CAS  Google Scholar 

  23. Lee, C., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., et al.: Friction characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010). https://doi.org/10.1126/science.1184167

    Article  CAS  Google Scholar 

  24. Costagliola, G., Bosia, F., Pugno, N.M.: Static and dynamic friction of hierarchical surfaces. Phys. Rev. E 94(6), 063003 (2016). https://doi.org/10.1103/PhysRevE.94.063003

    Article  Google Scholar 

  25. Hou, B.Q., Guo, H.X., Zhang, N.L., Zhi, Q., Wang, B., Yang, J.F.: Anisotropic friction behavior of aligned and oriented graphite flakes/copper composite. Carbon 186, 64–74 (2022). https://doi.org/10.1016/j.carbon.2021.09.074

    Article  CAS  Google Scholar 

  26. Lin, G.Y., Peng, Y.F., Li, Y.S., Liang, H.Z., Dong, Z.L., Zhou, Y.H., et al.: Remarkable anisotropic wear resistance with 100-fold discrepancy in a copper matrix laminated composite with only 0.2 vol% graphene. Acta Mater. 215, 117092 (2021). https://doi.org/10.1016/j.actamat.2021.117092

    Article  CAS  Google Scholar 

  27. Kumar, N., Radhika, R., Kozakov, A.T., Pandian, R., Chakravarty, S., Ravindran, T.R., et al.: Friction anisotropy in boronated graphite. Appl. Surf. Sci. 324, 443–454 (2015). https://doi.org/10.1016/j.apsusc.2014.10.136

    Article  CAS  Google Scholar 

  28. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Ser. A 324(158), 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  CAS  Google Scholar 

  29. Bowden, F.P., Moore, A.J.W., Tabor, D.: The ploughing and adhesion of sliding metals. J. Appl. Phys. 14(2), 80–91 (1943). https://doi.org/10.1063/1.1714954

    Article  Google Scholar 

  30. Xiao, J.K., Zhang, L., Zhou, K.C., Wang, X.P.: Microscratch behavior of copper-graphite composites. Tribol. Int. 57, 38–45 (2013). https://doi.org/10.1016/j.triboint.2012.07.004

    Article  CAS  Google Scholar 

  31. Zaidi, H., Paulmier, D., Lepage, J.: The influence of the environment on the friction and wear of graphitic carbons: II. Gas coverage of wear debris. Appl. Surf. Sci. 44(3), 221–233 (1990). https://doi.org/10.1016/0169-4332(90)90053-3

    Article  CAS  Google Scholar 

  32. Kumar, N., Dash, S., Tyagi, A.K., Raj, B.: Super low to high friction of turbostratic graphite under various atmospheric test conditions. Tribol. Int. 44(12), 1969–1978 (2011). https://doi.org/10.1016/j.triboint.2011.08.012

    Article  CAS  Google Scholar 

  33. Han, X.M., Gao, F., Su, L.L., Fu, R., Zhang, E.: Effect of graphite content on the tribological performance of copper-matrix composites under different friction speeds. J. Tribol. 139(4), 041601 (2017). https://doi.org/10.1115/1.4035014

    Article  CAS  Google Scholar 

  34. Ma, W.L., Lu, J.J.: Effect of sliding speed on surface modification and tribological behavior of copper-graphite composite. Tribol. Lett. 41(2), 363–370 (2011). https://doi.org/10.1007/s11249-010-9718-x

    Article  CAS  Google Scholar 

  35. Morstein, C.E., Dienwiebel, M.: Graphite lubrication mechanisms under high mechanical load. Wear 477, 203794 (2021). https://doi.org/10.1016/j.wear.2021.203794

    Article  CAS  Google Scholar 

  36. Wang, Y.J., Li, H.X., Liu, X.H., Ji, L., Wu, Y.X., Lv, Y.H., et al.: Friction and wear properties of graphite-like carbon films deposited on different substrates with a different interlayer under high Hertzian contact stress. Tribol. Lett. 46(3), 243–254 (2012). https://doi.org/10.1007/s11249-012-9943-6

    Article  CAS  Google Scholar 

  37. Kumar, N., Kozakov, A.T., Ravindran, T.R., Dash, S., Tyagi, A.K.: Load dependent friction coefficient of crystalline graphite and anomalous behavior of wear dimension. Tribol. Int. 88, 280–289 (2015). https://doi.org/10.1016/j.triboint.2015.03.034

    Article  CAS  Google Scholar 

  38. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48(2), 511–531 (2013). https://doi.org/10.1007/s10853-012-7038-2

    Article  CAS  Google Scholar 

  39. Fusaro, R.L.: Effect of load, area of contact and contact stress on the wear mechanisms of bonded solid lubricant film. Wear 75(2), 403–422 (1982). https://doi.org/10.1016/0043-1648(82)90161-2

    Article  CAS  Google Scholar 

  40. Peng, T., Yan, Q.Z., Li, G., Zhang, X.L.: The influence of Cu/Fe ratio on the tribological behavior of brake friction materials. Tribol. Lett. 66(1), 18 (2018). https://doi.org/10.1007/s11249-017-0961-2

    Article  CAS  Google Scholar 

  41. Fernandez, J.E., Wang, Y.L., Tucho, R., Martinluengo, M.A., Gancedo, R., Rincon, A.: Friction and wear behaviour of plasma-sprayed Cr2O3 coatings against steel in a wide range of sliding velocities and normal loads. Tribol. Int. 29(4), 333–343 (1996). https://doi.org/10.1016/0301-679X(96)00061-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2017YFB0310300, and 2017YFB0903803), the National Natural Science Foundation of China (Grant No. 51672209), Shaanxi Innovation Capacity Support Program (2018TD-031), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5046). Great thanks for these supports.

Funding

This research was funded by the National Key R&D Program of China (Grant Nos. 2017YFB0310300, and 2017YFB0903803), the National Natural Science Foundation of China (Grant Nos. 51672209, and 51872223), Shaanxi Innovation Capacity Support Program (2018TD-031), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5046).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, investigation, and writing—original draft: BH; Investigation: HG and NZ; Data curation: QZ; Project administration: BW; Supervision and writing—review and editing: JY.

Corresponding author

Correspondence to Jianfeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, B., Guo, H., Zhang, N. et al. Anisotropic Friction Derived from the Layered Arrangement of the Oriented Graphite Flakes in the Copper–Iron Matrix Composite. Tribol Lett 70, 78 (2022). https://doi.org/10.1007/s11249-022-01614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01614-2

Keywords

Navigation