Skip to main content
Log in

Compositional Tuning Reveals a Pathway to Achieve a Strong and Lubricious Double Network in Agarose-Polyacrylamide Hydrogels

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Hydrogels, bearing microstructural semblance to biological tissues, are prime candidates for translation replacement materials. Among them, double network (DN) hydrogels are at the forefront with their superior mechanical properties compared to conventional single network hydrogels. However, the functional design of the microstructure to control mechanical and tribological performance still poses a challenge. Here, hydrogels composed of physically crosslinked agarose and chemically crosslinked poly(acrylamide) were studied by spectroscopy, dynamic light scattering, atomic force microscopy and rheology. A viable hydrogel formed with the lowest acrylamide concentration, but the loose PAAm network did not reinforce the agarose network. Increasing the monomer and crosslinker concentration led to fast gelation of the second network, yielding poorly interconnected acrylamide-rich domains within the agarose network, and a weak and heterogenous hydrogel. Reducing the crosslinking degree to the half slowed down gelation, which favored the formation of an interpenetrating PAAm network, affording a two-fold increase in strength. While the adhesion of the investigated hydrogels is remarkably dictated and reduced by agarose, their frictional characteristics are highly sensitive to the composition. Importantly, friction can be modulated by varying the imbibed fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, Y.S., Khademhosseini, A.: Advances in engineering hydrogels. Science (2017). https://doi.org/10.1126/science.aaf3627

    Article  Google Scholar 

  2. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)

    Article  Google Scholar 

  3. Brand, R.A.: Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop. J. 25, 82–94 (2005)

    Google Scholar 

  4. Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

    Article  CAS  Google Scholar 

  5. Wang, M.X., Yang, C.H., Liu, Z.Q., Zhou, J., Xu, F., Suo, Z., et al.: Tough photoluminescent hydrogels doped with lanthanide. Macromol. Rapid Commun. 36, 465–471 (2015)

    Article  CAS  Google Scholar 

  6. Lake, G.J., Thomas, A.G.: The strength of highly elastic materials. Proc. R. Soc. Lond. A 300, 108–119 (1967)

    Article  CAS  Google Scholar 

  7. Sun, J.Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    Article  CAS  Google Scholar 

  8. Xu, X., Jerca, V.V., Hoogenboom, R.: Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater. Horiz. 8, 1173–1188 (2021)

    Article  CAS  Google Scholar 

  9. Haque, M.A., Kurokawa, T., Gong, J.P.: Super tough double network hydrogels and their application as biomaterials. Polymer 53, 1805–1822 (2012)

    Article  CAS  Google Scholar 

  10. Gao, G., Du, G., Sun, Y., Fu, J.: Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl. Mater. Interfaces 7, 5029–5037 (2015)

    Article  CAS  Google Scholar 

  11. Lin, S., Cao, C., Wang, Q., Gonzalez, M., Dolbow, J.E., Zhao, X.: Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Soft Matter 10, 7519–7527 (2014)

    Article  CAS  Google Scholar 

  12. Ekblad, T., Bergstrom, G., Ederth, T., Conlan, S.L., Mutton, R., Clare, A.S., et al.: Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules 9, 2775–2783 (2008)

    Article  CAS  Google Scholar 

  13. Tsukeshiba, H., Huang, M., Na, Y.H., Kurokawa, T., Kuwabara, R., Tanaka, Y., et al.: Effect of polymer entanglement on the toughening of double network hydrogels. J. Phys. Chem. B 109, 16304–16309 (2005)

    Article  CAS  Google Scholar 

  14. Nakajima, T., Furukawa, H., Tanaka, Y., Kurokawa, T., Osada, Y., Gong, J.P.: True chemical structure of double network hydrogels. Macromolecules 42, 2184–2189 (2009)

    Article  CAS  Google Scholar 

  15. Es-haghi, S.S., Leonov, A.I., Weiss, R.A.: On the necking phenomenon in pseudo-semi-interpenetrating double-network hydrogels. Macromolecules 46, 6203–6208 (2013)

    Article  CAS  Google Scholar 

  16. Arakaki, K., Kitamura, N., Fujiki, H., Kurokawa, T., Iwamoto, M., Ueno, M., et al.: Artificial cartilage made from a novel double-network hydrogel: in vivo effects on the normal cartilage and ex vivo evaluation of the friction property. J. Biomed. Mater. Res. A 93, 1160–1168 (2010)

    Google Scholar 

  17. Gu, Z., Huang, K., Luo, Y., Zhang, L., Kuang, T., Chen, Z., et al.: Double network hydrogel for tissue engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1520 (2018)

    Article  Google Scholar 

  18. Nakajima, T., Gong, J.P.: Double-Network Hydrogels: Soft and Tough IPN, pp. 1–6. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  19. Chen, Q., Zhu, L., Huang, L., Chen, H., Xu, K., Tan, Y., et al.: Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 47, 2140–2148 (2014)

    Article  CAS  Google Scholar 

  20. Shi, Y., Li, J., Xiong, D., Li, L., Liu, Q.: Mechanical and tribological behaviors of PVA/PAAm double network hydrogels under varied strains as cartilage replacement. J. Appl. Polym. Sci. 138, 50226 (2020)

    Article  CAS  Google Scholar 

  21. Chen, Q., Zhu, L., Chen, H., Yan, H., Huang, L., Yang, J., et al.: A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv. Func. Mater. 25, 1598–1607 (2015)

    Article  CAS  Google Scholar 

  22. Lin, T., Bai, Q., Peng, J., Xu, L., Li, J., Zhai, M.: One-step radiation synthesis of agarose/polyacrylamide double-network hydrogel with extremely excellent mechanical properties. Carbohydr. Polym. 200, 72–81 (2018)

    Article  CAS  Google Scholar 

  23. Cho, M.K., Singu, B.S., Na, Y.H., Yoon, K.R.: Fabrication and characterization of double-network agarose/polyacrylamide nanofibers by electrospinning. J. Appl. Polym. Sci. 133, 42914 (2016)

    Article  CAS  Google Scholar 

  24. Zhang, Y., Zhou, S., Zhang, L., Yan, Q., Mao, L., Wu, Y., et al.: Pre-Stretched double network polymer films based on agarose and polyacrylamide with sensitive humidity-responsive deformation, shape memory, and self-healing properties. Macromol. Chem. Phys. 221, 1900518 (2020)

    Article  CAS  Google Scholar 

  25. Mredha, M.T.I., Kitamura, N., Nonoyama, T., Wada, S., Goto, K., Zhang, X., et al.: Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials 132, 85–95 (2017)

    Article  CAS  Google Scholar 

  26. Yasuda, K., Kitamura, N., Gong, J.P., Arakaki, K., Kwon, H.J., Onodera, S., et al.: A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol. Biosci. 9, 307–316 (2009)

    Article  CAS  Google Scholar 

  27. Li, X., Wu, C., Yang, Q., Long, S., Wu, C.: Low-velocity super-lubrication of sodium-alginate/polyacrylamide ionic-covalent hybrid double-network hydrogels. Soft Matter 11, 3022–3033 (2015)

    Article  CAS  Google Scholar 

  28. Yu, F., Cui, T., Yang, C., Dai, X., Ma, J.: kappa-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere 237, 124417 (2019)

    Article  CAS  Google Scholar 

  29. Kaneko, D., Tada, T., Kurokawa, T., Gong, J.P., Osada, Y.: Mechanically strong hydrogels with ultra-low frictional coefficients. Adv. Mater. 17, 535–538 (2005)

    Article  CAS  Google Scholar 

  30. Katta, J.K., Marcolongo, M., Lowman, A., Mansmann, K.A.: Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement. J. Biomed. Mater. Res. A 83, 471–479 (2007)

    Article  CAS  Google Scholar 

  31. Zhang, K., Simic, R., Yan, W., Spencer, N.D.: Creating an interface: rendering a double-network hydrogel lubricious via spontaneous delamination. ACS Appl. Mater. Interfaces 11, 25427–25435 (2019)

    Article  CAS  Google Scholar 

  32. Bonyadi, S.Z., Demott, C.J., Grunlan, M.A., Dunn, A.C.: Cartilage-like tribological performance of charged double network hydrogels. J. Mech. Behav. Biomed. Mater. 114, 104202 (2021)

    Article  CAS  Google Scholar 

  33. Shoaib, T., Espinosa-Marzal, R.M.: Influence of loading conditions and temperature on static friction and contact aging of hydrogels with modulated microstructures. ACS Appl. Mater. Interfaces 11, 42722–42733 (2019)

    Article  CAS  Google Scholar 

  34. Shoaib, T., Espinosa-Marzal, R.M.: Insight into the viscous and adhesive contributions to hydrogel friction. Tribol. Lett. 66, 96 (2018)

    Article  CAS  Google Scholar 

  35. Shoaib, T., Yuh, C., Wimmer, M.A., Schmid, T.M., Espinosa-Marzal, R.M.: Nanoscale insight into the degradation mechanisms of the cartilage articulating surface preceding OA. Biomater. Sci. 8, 3944–3955 (2020)

    Article  CAS  Google Scholar 

  36. Joosten, J.G.H., McCarthy, J.L., Pusey, P.N.: Dynamic and static light scattering by aqueous polyacrylamide gels. Macromolecules 24, 6690–6699 (2002)

    Article  Google Scholar 

  37. Siegert, A.J.F.: On the fluctuations in signals returned by many independently moving scatterers. Radiation Laboratory, Massachusetts Institute of Technology, Cambridge, MA (1943)

    Google Scholar 

  38. Seiffert, S.: Scattering perspectives on nanostructural inhomogeneity in polymer network gels. Prog. Polym. Sci. 66, 1–21 (2017)

    Article  CAS  Google Scholar 

  39. Cannara, R.J., Eglin, M., Carpick, R.W.: Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77, 053701 (2006)

    Article  CAS  Google Scholar 

  40. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1997)

    Google Scholar 

  41. Hertz, H.: Ueber die Berührung fester elastischer Körper. 156–171 (1882)

  42. Gombert, Y., Simič, R., Roncoroni, F., Dübner, M., Geue, T., Spencer, N.D.: Structuring hydrogel surfaces for tribology. Adv. Mater. Interfaces 6, 1901320 (2019)

    Article  CAS  Google Scholar 

  43. Priya, M.V., Kumar, R.A., Sivashanmugam, A., Nair, S.V., Jayakumar, R.: Injectable amorphous chitin-agarose composite hydrogels for biomedical applications. J. Funct. Biomater. 6, 849–862 (2015)

    Article  CAS  Google Scholar 

  44. Hu, Z., Hong, P.Z., Li, S.D., Yang, L., Xie, J.Y.: Study on the preparation of quaternized chitosan/agarose microspheres for berbamine delivery. J. Polym. Mater. 29, 361–370 (2012)

    CAS  Google Scholar 

  45. Godwin Uranta, K., Rezaei-Gomari, S., Russell, P., Hamad, F.: Studying the effectiveness of polyacrylamide (PAM) application in hydrocarbon reservoirs at different operational conditions. Energies 11, 2201 (2018)

    Article  CAS  Google Scholar 

  46. Wang, F.C., Feve, M., Lam, T.M., Pascault, J.P.: FTIR analysis of hydrogen bonding in amorphous linear aromatic polyurethanes. I. Influence of temperature. J. Polym. Sci. Part B: Polym. Phys. 32, 1305–1313 (1994)

    Google Scholar 

  47. Dai, B., Matsukawa, S.: Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H NMR. Carbohydr. Res. 365, 38–45 (2013)

    Article  CAS  Google Scholar 

  48. De Gennes, P.G.: Scaling concepts in polymer physics. Cornell University Press, Ithaca and London (1979)

    Google Scholar 

  49. Shoaib, T., Carmichael, A., Corman, R.E., Shen, Y., Nguyen, T.H., Ewoldt, R.H., et al.: Self-adaptive hydrogels to mineralization. Soft Matter 13, 5469–5480 (2017)

    Article  CAS  Google Scholar 

  50. Delavoipiere, J., Tran, Y., Verneuil, E., Heurtefeu, B., Hui, C.Y., Chateauminois, A.: Friction of poroelastic contacts with thin hydrogel films. Langmuir 34, 9617–9626 (2018)

    Article  CAS  Google Scholar 

  51. Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter 13, 428–435 (2017)

    Article  CAS  Google Scholar 

  52. Watase, M., Nishinari, K.: Thermal and rheological properties of agarose-dimethyl sulfoxide-water gels. Polym. J. 20, 1125–1133 (1988)

    Article  CAS  Google Scholar 

  53. Deguchi, S., Lindman, B.: Novel approach for the synthesis of hydrophobe modified polyacrylamide. Direct N-alkylation of polyacrylamide in dimethyl sulfoxide. Polymer 40, 7163–7165 (1999)

    Article  CAS  Google Scholar 

  54. Brayton, C.F.: Dimethyl sulfoxide (DMSO): a review. Cornell Vet. 76, 61–90 (1986)

    CAS  Google Scholar 

  55. Kirchner, B., Reiher, M.: The secret of dimethyl sulfoxide-water mixtures. A quantum chemical study of 1DMSO-nwater clusters. J. Am. Chem. Soc. 124, 6206–6215 (2002)

    Article  CAS  Google Scholar 

  56. Murat Ozmen, M., Okay, O.: Formation of macroporous poly(acrylamide) hydrogels in DMSO/water mixture: transition from cryogelation to phase separation copolymerization. React. Funct. Polym. 68, 1467–1475 (2008)

    Article  CAS  Google Scholar 

  57. Ozmen, M.M., Dinu, M.V., Okay, O.: Preparation of macroporous poly(acrylamide) hydrogels in DMSO/water mixture at subzero temperatures. Polym. Bull. 60, 169–180 (2007)

    Article  CAS  Google Scholar 

  58. LeBel, R.G., Goring, D.A.I.: Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide. J. Chem. Eng. Data 7, 100–101 (2002)

    Article  Google Scholar 

  59. Rudge, R.E.D., Scholten, E., Dijksman, J.A.: Natural and induced surface roughness determine frictional regimes in hydrogel pairs. Tribol. Int. 141, 105903 (2020)

    Article  CAS  Google Scholar 

  60. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88, 075509 (2002)

    Article  CAS  Google Scholar 

  61. Hayashi, A., Kanzaki, T.: Swelling of agarose gel and its related changes. Food Hydrocolloids 1, 317–325 (1987)

    Article  CAS  Google Scholar 

  62. Xiong, J.Y., Narayanan, J., Liu, X.Y., Chong, T.K., Chen, S.B., Chung, T.S.: Topology evolution and gelation mechanism of agarose gel. J. Phys. Chem. B 109, 5638–5643 (2005)

    Article  CAS  Google Scholar 

  63. Gombert, Y., Roncoroni, F., Sanchez-Ferrer, A., Spencer, N.D.: The hierarchical bulk molecular structure of poly(acrylamide) hydrogels: beyond the fishing net. Soft Matter 16, 9789–9798 (2020)

    Article  CAS  Google Scholar 

  64. de Gennes, P.-G.: Effect of cross-links on a mixture of polymers. J. Physique Lett. 40, 69–72 (1979)

    Article  Google Scholar 

  65. Nakajima, T., Furukawa, H., Tanaka, Y., Kurokawa, T., Gong, J.P.: Effect of void structure on the toughness of double network hydrogels. J. Polym. Sci. Part B: Polym. Phys. 49, 1246–1254 (2011)

    Article  CAS  Google Scholar 

  66. Pitenis, A.A., Sawyer, W.G.: Lubricity of high water content aqueous gels. Tribol. Lett. 66(3), 1–7 (2018)

    CAS  Google Scholar 

  67. Shoaib, T., Heintz, J., Lopez-Berganza, J.A., Muro-Barrios, R., Egner, S.A., Espinosa-Marzal, R.M.: Stick-slip friction reveals hydrogel lubrication mechanisms. Langmuir 34, 756–765 (2018)

    Article  CAS  Google Scholar 

  68. Cuccia, N.L., Pothineni, S., Wu, B., Mendez Harper, J., Burton, J.C.: Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proc. Natl. Acad. Sci. USA 117, 11247–11256 (2020)

    Article  CAS  Google Scholar 

  69. McGhee, E.O., Chau, A.L., Cavanaugh, M.C., Rosa, J.G., Davidson, C.L.G., Kim, J., et al.: Amphiphilic gel lubrication and the solvophilic transition. Biotribology 26, 100170 (2021)

    Article  Google Scholar 

  70. Chen, Q., Wei, D., Chen, H., Zhu, L., Jiao, C., Liu, G., et al.: Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first physically linked network. Macromolecules 48, 8003–8010 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Materials Research Laboratory (MRL) at UIUC for providing the DLS facility.

Funding

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1761696.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Tooba Shoaib and Paige Prendergast, and analysis was carried out by all authors. The first draft of the manuscript was written by Tooba Shoaib and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rosa M. Espinosa-Marzal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, T., Prendergast, P. & Espinosa-Marzal, R.M. Compositional Tuning Reveals a Pathway to Achieve a Strong and Lubricious Double Network in Agarose-Polyacrylamide Hydrogels. Tribol Lett 70, 71 (2022). https://doi.org/10.1007/s11249-022-01604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01604-4

Keywords

Navigation