Skip to main content
Log in

In Situ Observation of Crystal Grain Orientation During Scuffing Process of Steel Surface Using Synchrotron X-ray Diffraction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Scuffing is a catastrophic failure that causes significant surface damages such as plastic flow and welding with a marked increase in friction, wear, temperature and noise. In this study, variations in the crystal grain structure of a steel surface was analysed in situ during the scuffing process using a synchrotron X-ray diffraction system, combined with a visible camera and a near-infrared thermometer. The in situ observation system was synchronously operated to capture a contact area between a rotating sapphire ring and a stationary bearing steel pin. The Debye–Scherrer ring diffracted from the contact area was captured by a two-dimensional detector. The scuffing behaviour could be classified as either micro scuffing or macro scuffing. During the micro scuffing period, plastic flow occurred intermittently with a significant temperature rise of approximately 1000 °C. During the macro scuffing period, heat was continuously generated over the contact area. When plastic flow occurred, the captured Debye–Scherrer ring indicated the orientation of crystal grains as well as a phase transformation from martensite to austenite. This study constitutes the first in-situ observation of the behaviour of crystal grains in the dynamic recrystallisation process occurring during the scuffing process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012)

    Google Scholar 

  2. Dyson, A.: Scuffing—a review. Tribol. Int. 8(2), 77–87 (1975a)

    Google Scholar 

  3. Dyson, A.: Scuffing—a review: part 2: the mechanism of scuffing. Tribol. Int. 8(3), 117–122 (1975b)

    Google Scholar 

  4. Scott, D., Smith, A.I., Tait, J., Tremain, G.R.: Materials and metallurgical aspects of piston ring scuffing—a literature survey. Wear 33(2), 293–315 (1975)

    CAS  Google Scholar 

  5. Ludema, K.C.: A review of scuffing and running-in of lubricated surfaces, with asperities and oxides in perspective. Wear 100(1–3), 315–331 (1984)

    CAS  Google Scholar 

  6. Bowman, W.F., Stachowiak, G.W.: A review of scuffing models. Tribol. Lett. 2(2), 113–131 (1996)

    CAS  Google Scholar 

  7. Memorandum on definitions, symbols, and units. In: Proceedings of the Conference on Lubrication and Wear, vol. 4. The Institution of Mechanical Engineers, London (1957)

  8. Organisation for Economic Cooperation and Development. Glossary of Terms and Definitions in the Field of Friction Wear and Lubrication = Tribology =, Research Group on Wear of Engineering Materials, vol. 53. Organisation for Economic Cooperation and Development, Paris (1969)

  9. Bowden, F.P., Tabor, D.: The seizure of metals. Proc. Inst. Mech. Eng. 160, 380–383 (1949)

    Google Scholar 

  10. Semenov, A.P.: The phenomenon of seizure and its investigation. Wear 4(1), 1–9 (1960)

    Google Scholar 

  11. Mishina, H., Sasada, T.: Observation of micro-structure in seized portion and mechanism of seizure. Trans. ASME J. Tribol. 108, 28–133 (1986)

    Google Scholar 

  12. Campany, R.G., Wilson, R.W.: The metallurgy of scoring and scuffing failure. In: Dowson, D., Taylor, C.M., Godet, M., Berthe, D. (eds.) Proceedings of the 9th Leeds-Lyon Symposium on Tribology, Tribology of Reciprocating Engines, 201–211. Butterworth & Co Ltd, Guildford (1983)

  13. Wang, Y., Tian, T.: Exploring operation mechanisms of the flexible metal-to-metal face seal: part II—scoring and leakage analysis. Tribol. Trans. 53(5), 649–657 (2010)

    CAS  Google Scholar 

  14. Ling, F.F., Saibel, E.: Thermal aspects of galling of dry metallic surfaces in sliding contact. Wear 1(2), 80–91 (1957/58)

  15. Rabinowicz, E.: Friction seizure and galling seizure. Wear 25(3), 357–363 (1973)

    Google Scholar 

  16. Ohmori, T., Kitamura, K., Danno, A., Kawamura, M.: Evaluation of galling prevention properties of cold-forging oils by ball penetration test. Wear 155(1), 183–192 (1992)

    CAS  Google Scholar 

  17. Blok, H.: The flash temperature concept. Wear 6(6), 483–494 (1963)

    Google Scholar 

  18. Wojciechowski, Ł, Mathiab, T.G.: Focus on the concept of pressure-velocity-time (pVt) limits for boundary lubricated scuffing. Wear 15, 179–186 (2018)

    Google Scholar 

  19. Castro, J., Seabra, J.: Influence of mass temperature on gear scuffing. Tribol. Int. 119, 27–37 (2018)

    Google Scholar 

  20. Christensen, H.: Failure by collapse of hydrodynamic oil films. Wear 22(3), 359–366 (1972)

    Google Scholar 

  21. Dyson, A.: The failure of elastohydrodynamic lubrication of circumferentially ground discs. Proc. Inst. Mech. Eng. 190, 699–711 (1976)

    Google Scholar 

  22. Enthoven, J., Spikes, H.A.: Infrared and visual study of the mechanisms of scuffing. Tribol. Trans. 39(2), 441–447 (1996)

    CAS  Google Scholar 

  23. Batchelor, A.W., Stachowiak, G.W.: Model of scuffing based on the vulnerability of an elastohydrodynamic oil film to chemical degradation catalyzed by the contacting surfaces. Tribol. Lett. 1(4), 349–365 (1995)

    CAS  Google Scholar 

  24. Chandrasekaran, M., Batchelor, A.W., Loh, N.L.: Lubricated seizure of stainless observed by X-ray imaging. Wear 243, 68–75 (2000)

    CAS  Google Scholar 

  25. Wojciechowski, L., Kubiak, K.J., Mathiad, T.G.: Roughness, and wettability of surfaces in boundary lubricated scuffing wear. Tribol. Int. 93(Part(B)), 593–601 (2016)

    CAS  Google Scholar 

  26. O’Donoghue, J.P., Cameron, A.: Temperature at scuffing. Proc. Inst. Mech. Eng. 180(Part 3B), 85–94 (1965–66)

  27. Cameron, A.: The role of chemistry in lubrication and scuffing. ASLE Trans. 23(4), 388–392 (1980)

    CAS  Google Scholar 

  28. Cutiongco, E.C., Chung, Y.-W.: Prediction of scuffing failure based on competitive kinetics of oxide formation and removal: application to lubricated sliding of AISI 52100 steel on steel. Tribol. Trans. 37(3), 622–628 (1994)

    CAS  Google Scholar 

  29. Saeidi, F., Taylor, A.A., Meylan, B., Hoffmann, P., Wasmer, K.: Origin of scuffing in grey cast iron-steel tribo-system. Mater Des. 116(15), 622–630 (2017)

    CAS  Google Scholar 

  30. Rogers, M.D.: Metallographic characterisation of transformation phases on scuffed cast-iron diesel engine components. Tribology 2(2), 123–127 (1969)

    CAS  Google Scholar 

  31. Rogers, M.D.: The mechanism of scuffing in diesel engines. Wear 15(2), 105–116 (1970)

    Google Scholar 

  32. Torrance, A.A., Cameron, A.: Surface transformations in scuffing. Wear 28(3), 299–311 (1974)

    CAS  Google Scholar 

  33. Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., Fenske, G.R.: Formation of austenite during scuffing failure of SAE 4340 steel. Wear 256(1–2), 159–167 (2004)

    CAS  Google Scholar 

  34. Ajayi, O.O., Hersberger, J.G., Zhang, J., Yoon, H., Fenske, G.R.: Microstructural evolution during scuffing of hardened 4340 steel—implication for scuffing mechanism. Tribol. Int. 38(3), 277–282 (2005)

    CAS  Google Scholar 

  35. Yagi, K., Ebisu, Y., Sugimura, J., Kajita, S., Ohmori, T., Suzuki, A.: In situ observation of wear process before and during scuffing in sliding contact. Tribol. Lett. 43(3), 361–368 (2011). https://doi.org/10.1007/s11249-011-9817-3

    Article  Google Scholar 

  36. Li, H., Yagi, K., Sugimura, J., Kajita, S., Shinyoshi, T.: Role of wear particles in scuffing initiation. Tribol. Online 8(5), 285–294 (2013). https://doi.org/10.2474/trol.8.285

    Article  CAS  Google Scholar 

  37. Kajita, S., Yagi, K., Izumi, T., Koyamachi, J., Tohyama, M., Saito, K., Sugimura, J.: In situ X-ray diffraction study of phase transformation of steel in scuffing process. Tribol. Lett. 57, 6 (2015). https://doi.org/10.1007/s11249-014-0443-8

    Article  CAS  Google Scholar 

  38. Yagi, K., Kajita, S., Izumi, T., Koyamachi, J., Tohyama, M., Saito, K., Sugimura, J.: Simultaneous synchrotron X-ray diffraction, near-infrared, and visible in situ observation of scuffing process of steel in sliding contact. Tribol. Lett. 61, 19 (2016). https://doi.org/10.1007/s11249-015-0636-9

    Article  CAS  Google Scholar 

  39. Matsuzaki, Y., Yagi, K., Sugimura, J.: In-situ fast and long observation system for friction surfaces during scuffing of steel. Wear 386, 165–172 (2017). https://doi.org/10.1016/j.wear.2017.06.013

    Article  CAS  Google Scholar 

  40. Izumi, T., Yagi, K., Koyamachi, J., Saito, K., Sanda, S., Yamaguchi, S., Ikehata, H., Yogo, Y., Sugimura, J.: Surface deteriorations during scuffing process of steel and analysis of their contribution to wear using in situ synchrotron X-ray diffraction and optical observations. Tribol. Lett. 66, 120 (2018). https://doi.org/10.1007/s11249-018-1062-6

    Article  CAS  Google Scholar 

  41. Matsuzaki, Y., Yagi, K., Sugimura, J.: In situ observation of heat generation behaviour on steel surface during scuffing process. Tribol. Lett. 66, 142 (2018). https://doi.org/10.1007/s11249-015-0636-9

    Article  CAS  Google Scholar 

  42. Kato, M., Matsuzaki, Y., Yagi, K., Sugimura, J.: Influence of crystal grain structure of steel surface on formation of chemical reaction film derived from engine oil additives. Tribol. Int. 151, 106458 (2020). https://doi.org/10.1016/j.triboint.2020.106458

    Article  CAS  Google Scholar 

  43. Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn. Addison-Wesley Publishing Co., Inc., Reading, MA (1978)

    Google Scholar 

  44. Emurlaev, K.I., Bataev, I.A., Lazurenko, D.V., Burov, V.G., Ivanov, I.V., Emurlaeva, Y.Y.: Deformation-induced martensite transformation in AISI 321 stainless steel under dry sliding friction. Mater. Today: Proc. 25(3), 424–427 (2020)

    CAS  Google Scholar 

  45. Bataev, I.A., Lazurenko, D.V., Bataev, A.A., Burov, V.G., Ivanov, I.V., Emurlaev, K.I., Smirnov, A.I., Rosenthal, M., Burghammer, M., Ivanov, D.A., Georgarakis, K., Ruktuev, A.A., Ogneva, T.S., Jorge, A.M.J.: A novel operando approach to analyze the structural evolution of metallic materials during friction with application of synchrotron radiation. Acta Mater. 196(1), 355–369 (2020)

    CAS  Google Scholar 

  46. Hirose, Y.: TOYOTA beamline BL33XU. In: SPring-8 Research Frontiers 2009. 170 (2010). http://www.spring8.or.jp/pdf/en/res_fro/09/Research_Frontiers_2009_%20web.pdf

  47. Nonaka, T., Dohmae, K., Hayashi, Y., Araki, T., Yamaguchi, S., Nagai, Y., Hirose, Y., Tanaka, T., Kitamura, H., Uruga, T., Yamazaki, H., Yumoto, H., Ohashi, H., Goto, S.: Toyota beamline (BL33XU) at SPring-8. AIP Conf. Proc. 1741, 030043 (2016)

    Google Scholar 

  48. Heilmann, P., Clark, W.A.T., Rigney, D.A.: Orientation determination of subsurface cells generated by sliding. Acta Metall. 31(8), 1293–1305 (1983)

    CAS  Google Scholar 

  49. Rainforth, W.M., Stevens, R., Nutting, J.: Deformation structures induced by sliding contact. Philos. Mag. A 66(4), 621–641 (1992)

    Google Scholar 

  50. Hughes, D.A., Dawson, D.B., Korellls, J.S., Weingarten, L.I.: Near surface microstructures developing under large sliding loads. J. Mater. Eng. Perform. 3(4), 459–475 (1994)

    CAS  Google Scholar 

  51. Rainforth, W.M.: Microstructural evolution at the worn surface: A comparison of metals and ceramics. Wear 245(1–2), 162–177 (2000)

    CAS  Google Scholar 

  52. Prasad, S.V., Michael, J.R., Christenson, T.R.: EBSD studies on wear-induced subsurface regions in LIGA nickel. Scripta Mater. 48(3), 255–260 (2003)

    CAS  Google Scholar 

  53. Rogers, H.C.: Adiabatic plastic deformation. Annu. Rev. Mater. Sci. 9, 283–311 (1979)

    CAS  Google Scholar 

  54. Duffy, A.M.J.: An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solids 36(3), 251–283 (1988)

    Google Scholar 

  55. Meyers, M.A., Nesterenko, V.F., LaSalvia, J.C., Xu, Y.B., Xue, Q.: Observation and modeling of dynamic recrystallization in high-strain, high-strain rate deformation of metals. J. Phys. Fr. 10, Pr9-51-Pr9-56 (2000)

    Google Scholar 

  56. Xue, Q., Gray, G.T., III.: Development of adiabatic shear bands in annealed 316L stainless steel. Part II TEM studies of the evolution of microstructure during deformation localization. Metall. Mater. Trans. A 37, 2447–2457 (2006)

    Google Scholar 

  57. Polyzois, I., Bassim, N.: An examination of the formation of adiabatic shear bands in AISI 4340 steel through analysis of grains and grain deformation. Mater. Sci. Eng. A 631, 18–26 (2015)

    CAS  Google Scholar 

  58. Hosseini, S.B., Klement, U., Yao, Y., Ryttberg, K.: Formation mechanisms of white layers induced by hard turning of AISI 52100 steel. Acta Mater. 89(1), 258–267 (2015)

    CAS  Google Scholar 

  59. Li, S.-X., Zhao, P.-C., He, Y.-N., Yu, S.-R.: Microstructural evolution associated with shear location of AISI 52100 under high strain rate loading. Mater. Sci. Eng. A 662, 46–53 (2016)

    CAS  Google Scholar 

  60. Hossain, R., Pahlevani, F., Witteveen, E., Banerjee, A., Joe, B., Prusty, B.G., Dipenaar, R., Sahajwalla, V.: Hybrid structure of white layer in high carbon steel—formation mechanism and its properties. Sci. Rep. 7, 13288 (2017)

    Google Scholar 

Download references

Acknowledgements

The scuffing test was conducted at the Toyota beamline BL33XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014B7021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yagi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, K., Izumi, T., Koyamachi, J. et al. In Situ Observation of Crystal Grain Orientation During Scuffing Process of Steel Surface Using Synchrotron X-ray Diffraction. Tribol Lett 68, 115 (2020). https://doi.org/10.1007/s11249-020-01357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01357-y

Keywords

Navigation