Skip to main content
Log in

On the Gravity-Driven Sliding Motion of a Planar Board on a Tilted Soft Porous Layer

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

A Correction to this article was published on 28 March 2022

This article has been updated

Abstract

In this paper, we report a novel experimental study to investigate the gravity-driven sliding motion of a planar board over a tilted soft porous layer. A laser displacement sensor was used to measure the motion of the board, while a high-speed camera was adopted to capture the detailed compression of the porous layer when the board glided over it. The pore pressure generation, as a result of the compression, was recorded by pressure sensors mounted on the bottom surface of the porous layer. One finds that, the pressure distribution agrees well with the theory developed by Wu and Sun (Med Sci Sports Exerc 43:1955–1963, 2011). Extensive parametric study was performed by varying the center of gravity of the planar board, the tilted angle and the porous material. Consistent agreement between the theoretical predictions and experimental results was obtained. It shows that, the effect of soft porous lubrication is enhanced when the center of gravity moves toward to the trailing edge of the planar board, or the tilted angle of the porous layer is increased, or a smoother fibrous surface is used.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Feng, J., Weinbaum, S.: Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J. Fluid Mech. 422, S0022112000001725 (2000). https://doi.org/10.1017/S0022112000001725

    Article  Google Scholar 

  2. Weinbaum, S., Duan, Y., Thi, M.M., You, L.: An integrative review of mechanotransduction in endothelial, epithelial (renal) and dendritic cells (osteocytes). Cell. Mol. Bioeng. 4, 510–537 (2011). https://doi.org/10.1007/s12195-011-0179-6

    Article  Google Scholar 

  3. Secomb, T.W.: Blood flow in the microcirculation. Annu. Rev. Fluid Mech. 49, 443–461 (2017). https://doi.org/10.1146/annurev-fluid-010816-060302

    Article  Google Scholar 

  4. Wu, Q., Andreopoulos, Y., Weinbaum, S.: From red cells to snowboarding: a new concept for a train track. Phys. Rev. Lett. 93, 194501 (2004). https://doi.org/10.1103/PhysRevLett.93.194501

    Article  CAS  Google Scholar 

  5. Wu, Q., Andreopoulos, Y., Weinbaum, S.: Lessons learned from the exquisite design of the endothelial surface glycocalyx and their amazing applications. In: Collins, M.W., Brebbia, C.A. (eds.) Design and Nature II, pp. 329–338. WIT Press, Southampton (2004)

    Google Scholar 

  6. Davies, H.S., Débarre, D., El Amri, N., Verdier, C., Richter, R.P., Bureau, L.: Elastohydrodynamic lift at a soft wall. Phys. Rev. Lett. 120, 198001 (2018). https://doi.org/10.1103/PhysRevLett.120.198001

    Article  CAS  Google Scholar 

  7. Dėdinaitė, A.: Biomimetic lubrication. Soft Matter 8, 273–284 (2011). https://doi.org/10.1039/c1sm06335a

    Article  CAS  Google Scholar 

  8. McNary, S.M., Athanasiou, K.A., Reddi, A.H.: Engineering lubrication in articular cartilage. Tissue Eng. Part B 18, 88–100 (2011). https://doi.org/10.1089/ten.teb.2011.0394

    Article  CAS  Google Scholar 

  9. Ateshian, G.A.: The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163–1176 (2009). ​https://doi.org/10.1016/j.jbiomech.2009.04.040

    Article  Google Scholar 

  10. Hagihara, Y., Murakami, T., Sakai, N., Furusawa, T., Sawae, Y., Hosoda, N.: Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribol. Int. 46, 225–236 (2011). https://doi.org/10.1016/j.triboint.2011.03.016

    Article  CAS  Google Scholar 

  11. Rallabandi, B., Saintyves, B., Jules, T., Salez, T., Schönecker, C., Mahadevan, L., Stone, H.A.: Rotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids. 2, 1–18 (2017). https://doi.org/10.1103/PhysRevFluids.2.074102

    Article  Google Scholar 

  12. Wang, Q., Zhu, Z., Nathan, R., Wu, Q.: On the study of fluid flow in a soft porous media using a scaled-up indenter. Eur. J. Mech. B Fluids 76, 332–339 (2019). https://doi.org/10.1016/j.euromechflu.2019.03.012

    Article  Google Scholar 

  13. Wu, Q., Igci, Y., Andreopoulos, Y., Weinbaum, S.: Lift mechanics of downhill skiing and snowboarding. Med. Sci. Sport. Exerc. 38, 1132–1146 (2006)

    Article  Google Scholar 

  14. Wu, Q., Sun, Q.: A comprehensive skiing mechanics theory with implications to snowboard optimization. Med. Sci. Sport. Exerc. 43, 1955–1963 (2011). https://doi.org/10.1249/MSS.0b013e318219480c

    Article  Google Scholar 

  15. Zhu, Z., Nathan, R., Wu, Q.: An experimental study of the lubrication theory for highly compressible porous media, with and without lateral leakage. Tribol. Int. 127, 324–332 (2018). https://doi.org/10.1016/j.triboint.2018.06.016

    Article  Google Scholar 

  16. Zhu, Z., Nathan, R., Wu, Q.: Multi-scale soft porous lubrication. Tribol. Int. 137, 246–253 (2019). https://doi.org/10.1016/j.triboint.2019.05.003

    Article  CAS  Google Scholar 

  17. Skotheim, J.M., Mahadevan, L.: Soft lubrication. Phys. Rev. Lett. 92, 245509 (2004). https://doi.org/10.1103/PhysRevLett.92.245509

    Article  CAS  Google Scholar 

  18. Skotheim, J.M., Mahadevan, L.: Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17, 1–23 (2005). https://doi.org/10.1063/1.1985467

    Article  CAS  Google Scholar 

  19. Pascovici, M.D., Cicone, T., Marian, V.: Squeeze process under impact, in highly compressible porous layers, imbibed with liquids. Tribol. Int. 42, 1433–1438 (2009). https://doi.org/10.1016/j.triboint.2009.05.006

    Article  CAS  Google Scholar 

  20. Popescu, C.S.: Dynamic permeability of highly compressible porous layers under squeeze at constant velocity and under impact. Tribol. Int. 44, 272–283 (2011). https://doi.org/10.1016/j.triboint.2010.10.030

    Article  Google Scholar 

  21. Crawford, R., Nathan, R., Jen, K.-P., Wu, Q.: Dynamic compression of soft porous media: from finite to infinite domain. J. Porous Media. 14, 51–64 (2011). https://doi.org/10.1615/jpormedia.v14.i1.40

    Article  Google Scholar 

  22. Crawford, R., Nathan, R., Wang, L., Wu, Q.: Experimental study on the lift generation inside a random synthetic porous layer under rapid compaction. Exp. Therm. Fluid Sci. 36, 205–216 (2012). https://doi.org/10.1016/j.expthermflusci.2011.09.014

    Article  Google Scholar 

  23. Gacka, T., Zhu, Z., Crawford, R., Nathan, R., Wu, Q.: From red cells to soft lubrication, an experimental study of lift generation inside a compressible porous layer. J. Fluid Mech. 818, 5–25 (2017). https://doi.org/10.1017/jfm.2017.133

    Article  Google Scholar 

  24. Wu, Q., Santhanam, S., Nathan, R., Wang, Q.: A biphasic approach for the study of lift generation in soft porous media. Phys. Fluids 29, 043602 (2017). https://doi.org/10.1063/1.4981223

    Article  CAS  Google Scholar 

  25. Zhu, Z., Weinbaum, S., Wu, Q.: Experimental study of soft porous lubrication. Phys. Rev. Fluids. 4, 024305 (2019). https://doi.org/10.1103/PhysRevFluids.4.024305

    Article  Google Scholar 

  26. Saintyves, B., Jules, T., Salez, T., Mahadevan, L.: Self-sustained lift and low friction via soft lubrication. Proc. Natl. Acad. Sci. USA 113, 5847–5849 (2016). https://doi.org/10.1073/pnas.1525462113

    Article  CAS  Google Scholar 

  27. Crawford, R., Jones, G.F., You, L., Wu, Q.: Compression-dependent permeability measurement for random soft porous media and its implications to lift generation. Chem. Eng. Sci. 66, 294–302 (2011). https://doi.org/10.1016/j.ces.2010.10.037

    Article  CAS  Google Scholar 

  28. Zhu, Z., Wang, Q., Wu, Q.: On the examination of the Darcy permeability of soft fibrous porous media; new correlations. Chem. Eng. Sci. 173, 525–536 (2017). https://doi.org/10.1016/j.ces.2017.08.021

    Article  CAS  Google Scholar 

  29. Wang, Q., Pei, S., Lu, X.L., Wang, L., Wu, Q.: On the characterization of interstitial fluid flow in the skeletal muscle endomysium. J. Mech. Behav. Biomed. Mat. 102, 103504 (2019). https://doi.org/10.1016/j.jmbbm.2019.103504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation under Award No. 1511096. The authors would like to acknowledge Mr. Lu An for helping in SEM analysis of the testing materials, and Mr. Bchara Sidnawi and Mr. James Reynolds for manuscript proof-reading. The technical support from Mr. Chris Townend and Mr. Zach Nowasad are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianhong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11249_2019_1238_MOESM1_ESM.mp4

The sliding motion of the planar board on the porous layer is recorded by a high-speed camera at the moment when the geometric center of the board gliding through the absolute location S = 98.9 mm. We provide herein two videos which represent two different D/L ratios when θ = 17.5° and the porous material is cotton fibers. Video 1 is for D/L = 1.42, while Video 2 is for D/L = 0.17. It is clearly shown in these two videos the instantaneous compression of the porous layer. Supplementary material 1 (MP4 1633 kb)

Supplementary material 2 (MP4 1261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Nathan, R. & Wu, Q. On the Gravity-Driven Sliding Motion of a Planar Board on a Tilted Soft Porous Layer. Tribol Lett 67, 126 (2019). https://doi.org/10.1007/s11249-019-1238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1238-8

Keywords

Navigation