Skip to main content
Log in

Effect of Ti3AlC2 Content on Electrical Friction and Wear Behaviors of Cu–Ti3AlC2 Composites

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effect of Ti3AlC2 content on electrical friction and wear behaviors of Cu–Ti3AlC2 composites is investigated. Composites with different volume ratios of Ti3AlC2 are prepared by the hot-pressing method, and experiments are performed on a block-on-ring sliding electrical wear tester. The results demonstrate that with increasing Ti3AlC2 content, the contact voltage drops of the Cu–Ti3AlC2 composites increase, the friction coefficient decreases, and the wear rate initially decreases and then increases. A lubricating film forms on the worn surface during the process of electrical sliding wear, which improves the wear resistance of the material. Raman spectroscopy and X-ray photoelectron spectroscopy spectra of the worn surface show that the lubricating film comprises Ti3AlC2, CuO, TiO2 and Al2O3, where the TiO2 and Al2O3 result from decomposition of Ti3AlC2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ding, T., Chen, G.X., Li, Y.M., He, Q.D., Xuan, W.J.: Friction and wear behavior of pantograph strips sliding against copper contact wire with electric current. AASRI Procedia 2, 288–292 (2012)

    Article  Google Scholar 

  2. Bucca, G., Collina, A.: A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system. Wear 266, 46–59 (2009)

    Article  CAS  Google Scholar 

  3. Huang, S., Feng, Y., Liu, H., Ding, K., Qian, G.: Electrical sliding friction and wear properties of Cu–MoS2–graphite–WS2 nanotubes composites in air and vacuum conditions. Mater. Sci. Eng. A 560, 685–692 (2013)

    Article  CAS  Google Scholar 

  4. Yi, F., Zhang, M., Xu, Y.: Effect of the electric current on the friction and wear properties of the CNT–Ag–G composites. Carbon 43, 2685–2692 (2005)

    Article  CAS  Google Scholar 

  5. Zhao, H., Barber, G.C., Liu, J.: Friction and wear in high speed sliding with and without electrical current. Wear 249, 409–414 (2001)

    Article  CAS  Google Scholar 

  6. Wang, Y.A., Li, J.X., Yan, Y., Qiao, L.J.: Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy. Tribol. Int. 50, 26–34 (2012)

    Article  Google Scholar 

  7. Su, L., Gao, F., Han, X., Fu, R., Zhang, E.: Tribological behavior of copper–graphite powder third body on copper-based friction materials. Tribol. Lett. 60, 30 (2015)

    Article  Google Scholar 

  8. Hu, Z.L., Chen, Z.H., Xia, J.T., Ding, G.Y.: Effect of pv factor on the wear of carbon brushes for micromotors. Wear 265, 336–340 (2008)

    Article  CAS  Google Scholar 

  9. Hu, Z.L., Chen, Z.H., Xia, J.T.: Study on surface film in the wear of electrographite brushes against copper commutators for variable current and humidity. Wear 264, 11–17 (2008)

    Article  CAS  Google Scholar 

  10. Hu, Z.L., Chen, Z.H., Xia, J.T., Ding, G.Y.: Wear property of high-resistivity carbon brushes made with and without MoS2 in variable humidity. Trans. Nonferrous Met. Soc. China 18, 340–345 (2008)

    Article  Google Scholar 

  11. Qian, G., Feng, Y., Chen, Y.M., Mo, F., Wang, Y.Q., Liu, W.H.: Effect of WS2 addition on electrical sliding wear behaviors of Cu–graphite–WS2 composites. Trans. Nonferrous Met. Soc. China 25, 1986–1994 (2015)

    Article  CAS  Google Scholar 

  12. Yasar, I., Canakci, A., Arslan, F.: The effect of brush spring pressure on the wear behavior of copper–graphite brushes with electrical current. Tribol. Int. 40, 1381–1386 (2007)

    Article  CAS  Google Scholar 

  13. Kaczmar, J.W., Pietrzak, K., Włosińskic, W.: The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106, 58–67 (2000)

    Article  Google Scholar 

  14. Wang, J., Yi, F., Shu, L., Shen, L.: Influence of graphite content on sliding wear characteristics of CNTs-Ag-G electrical contact materials. Trans. Nonferrous Met. Soc. China 19, 113–118 (2009)

    Article  CAS  Google Scholar 

  15. He, D.H., Manory, R.: A novel electrical contact material with improved self-lubrication for railway current collectors. Wear 249, 626–636 (2001)

    Article  CAS  Google Scholar 

  16. Qian, G., Feng, Y., Chen, F.Y., Liu, W.H., Zhang, X.B., Liu, Y.F.: Effect of current polarity on electrical sliding wear behavior of Cu-WS2-graphite-WS2 nanotube composites in air and vacuum conditions. Sci. China Technol. Sci. 56, 2839–2846 (2013)

    Article  CAS  Google Scholar 

  17. Qian, G., Feng, Y., Li, B., Huang, S.Y., Liu, H.J., Ding, K.W.: Effect of electrical current on the tribological behavior of the Cu-WS2-G composites in air and vacuum. Chin. J. Mech. Eng. 26, 384–392 (2013)

    Article  CAS  Google Scholar 

  18. Mo, F., Feng, Y., Chen, Y.M., Wang, Y.Q., Qian, G., Dou, Y.K., Zhang, X.B.: Effect of La2O3 on electrical friction and wear properties of Cu-graphite composites. J. Rare Earths 33, 327–333 (2015)

    Article  CAS  Google Scholar 

  19. Peng, T., Yan, Q., Li, G., Zhang, X., Wen, Z., Jin, X.: The braking behaviors of cu-based metallic brake pad for high-speed train under different initial braking speed. Tribol. Lett. 65, 135 (2017)

    Article  Google Scholar 

  20. Barsoum, M.W.: The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000)

    Article  CAS  Google Scholar 

  21. Tzenov, N.V., Barsoum, M.W.: Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825–832 (2010)

    Article  Google Scholar 

  22. Sun, Z.M.: Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev. 56, 143–166 (2011)

    Article  CAS  Google Scholar 

  23. Ai, T.T.: High-temperature oxidation behavior of un-dense Ti3AlC2 material at 1000 C in air. Ceram. Int. 38, 2537–2541 (2012)

    Article  CAS  Google Scholar 

  24. Bao, Y.W., Zhou, Y.C.: Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics. Mater. Lett. 57, 4018–4022 (2003)

    Article  CAS  Google Scholar 

  25. Zhou, Y.C., Wang, X.H., Sun, Z.M., Chen, S.Q.: Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 11, 2335–2339 (2001)

    Article  CAS  Google Scholar 

  26. Huang, X.C., Feng, Y., Dou, Y.K., Tang, H., Ding, D.D., Tian, P., Xia, M., Qian, G., Wang, Y.Q., Zhang, X.B.: Effect of electron irradiation on Ti3AlC2. Scr. Mater. 113, 114–117 (2016)

    Article  CAS  Google Scholar 

  27. Huang, X.C., Feng, Y., Qian, G., Zhao, H., Zhang, J.C., Zhang, X.B.: Physical, mechanical, and ablation properties of Cu-Ti3AlC2 composites with various Ti3AlC2 contents. Mater. Sci. Technol. 34, 757–762 (2018)

    Article  CAS  Google Scholar 

  28. Huang, X.C., Feng, Y., Qian, G., Zhang, J.C., Zhang, X.B.: Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere. Ceram. Int. 43, 10601–10605 (2017)

    Article  CAS  Google Scholar 

  29. Swamy, V.: Size-dependent modifications of the first-order Raman spectra of nanostructured rutile TiO2. Phys. Rev. B 77, 998–1002 (2008)

    Article  Google Scholar 

  30. Presser, V., Naguib, M., Chaput, L., Togo, A., Hug, G., Barsoum, M.W.: First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2. J. Raman Spectrosc. 43, 168–172 (2012)

    Article  CAS  Google Scholar 

  31. Porto, S.P.S., Krishnan, R.S.: Raman effect of corundum. J. Chem. Phys. 47, 1009–1012 (1967)

    Article  CAS  Google Scholar 

  32. Myhra, S., Crossley, J.A.A., Barsoum, M.W.: Crystal-chemistry of the Ti3AlC2 and Ti4AlN3 layered carbide/nitride phases-characterization by XPS. J. Phys. Chem. Solids 62, 811–817 (2001)

    Article  CAS  Google Scholar 

  33. Diebold, U.: TiO2 by XPS. Surf. Sci. Spectra 4, 227–231 (1996)

    Article  CAS  Google Scholar 

  34. Harju, M., Areva, S., Rosenholm, J.B., Mäntylä, T.: Characterization of water exposed plasma sprayed oxide coating materials using XPS. Appl. Surf. Sci. 254, 5981–5989 (2008)

    Article  CAS  Google Scholar 

  35. Rotole, J.A.: Corrundum (α-Al2O3) by XPS. Surf. Sci. Spectra 5, 11–17 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51571078, 51871085), and the Natural Science Foundation of Anhui Province (1808085 ME122, 1908085 QE218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Feng, Y., Qian, G. et al. Effect of Ti3AlC2 Content on Electrical Friction and Wear Behaviors of Cu–Ti3AlC2 Composites. Tribol Lett 67, 96 (2019). https://doi.org/10.1007/s11249-019-1211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1211-6

Keywords

Navigation